Seat No.:

MD-107

May-2017

B.C.A., Sem.-II

CC-111: Mathematical Foundation of Computer Science

Time: 3 Hours

[Max. Marks: 70

Instructions:

- (1) All the questions are compulsory.
- (2) Figures to the right indicate marks.
- (A) Define Abelian group. If '*' is defined on the set of integers Z as a * b = a + b + 2, prove that (Z, *) is an Abelian group.

OR

Define cyclic group. Find generator of $(Z_8, +_8)$.

(B) Define order of an element in a group. Let G = {1, -1, i,-i}, where i is the square root of (-1), be a multiplicative group. Find order of every element.

OR

For any a, b, $c \in G$, prove that

- (i) $a * b = a * c \Rightarrow b = c$ (Left Cancellation Law)
- (ii) $b * a = c * a \Rightarrow b = c$ (Right Cancellation Law)
- 2. (A) Define the Partition. Let A = {1, 2, 3, 4, 5} and R = {(1, 2), (1, 1), (2, 1), (2, 2), (3, 3), (4, 4), (4, 5), (5, 4), (5, 5)} be equivalence relation on A. Determine the partition corresponding to R⁻¹, if it is an equivalence relation.

OR

Let $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4\}$. Let R and S be two relations from A to B defined by $R = \{(1, 1), (2, 2), (3, 3)\}$ and $S = \{(1, 1), (1, 2), (1, 3), (1, 4)\}$. Find

- (i) $R \cup S$
- (v) Dom (R⁻¹)
- (ii) R ∩ S
- (vi) $(R \cup S)^{-1}$
- (iii) R-1
- (vii) $R^{-1} \cap S^{-1}$
- (iv) S-1
- (viii) Range (R ∩ S)

MD-107

1

P.T.O.

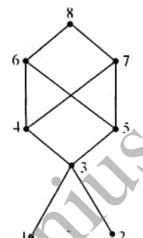
- (B) Define Chain. Draw the Hasse diagrams of the following sets under the partial order relation "divisibility". Also investigate for chain.
- 6

- (i) $\{1, 2, 4, 8\}$
- (ii) {2, 5, 20}
- (iii) {1, 2, 5, 10, 20}

OR

Consider the POSET $P = \{1, 2, 3, 4, 5, 6, 7, 8\}$ under the partial order whose Hasse Diagram is as shown below. Consider the subsets $A = \{1, 2\}$ and $B = \{3, 4, 5\}$ of P. Find

- (i) all the lower and upper bounds of A and B.
- (ii) GLB(A), LUB(A), GLB(B), LUB(B)



- 3. (A) Express the following Boolean expression in a sum of product canonical form:
- 8

6

- (i) $x_1 * (x'_2 * x_3)'$
- (ii) $x_3 * (x') \oplus x_2) \oplus x'_2$

OR

In any Boolean algebra, prove that

$$(a + b) (a' + c) = ac + a'b + bc = ac + a'b$$

- (B) In a lattice (L, \le) , if $a \le b \le c$, then verify that
 - (i) $a \oplus b = b * c$
 - (ii) $(a * b) \oplus (b * c) = (a \oplus b) * (a \oplus c)$

OR

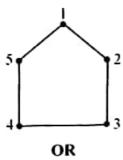
Define following:

- (i) Complete Lattice
- (ii) Complemented Lattice
- (iii) Boolean algebra
- (iv) Atoms in Boolean algebra
- (v) Sub-Boolean algebra
- (vi) Bounded Lattice

MD-107

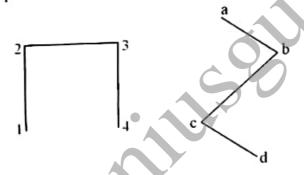
4. (A) Attempt the following:

- (i) Define Complete graph. Draw a complete graph on seven vertices.
- (ii) Define Complete of a graph. For a given graph below obtain its complemented graph.



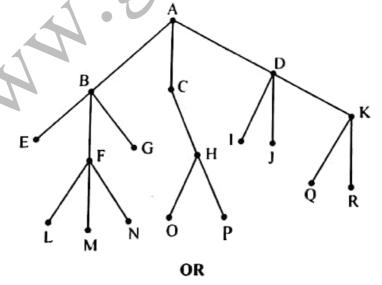
Attempt the following:

(i) Define the Isomorphic Graph. Check that the graphs given below are isomorphic or not?



- (ii) Define the following terminology:

 Forest, Degree of a vertex, Node base, Multi Graph
- (B) Convert the following tree into binary tree:



MD-107

3

P.T.O.

(B)	Attempt the following:								
	(i) Draw the diagraph G corresponding to the following matrix:								
	. ,	[0 1 1 0]							
		$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix}$							
		[0 2 0 0]	dd						
		Find total degree of all vertices. State which are even and which are o							
		Give other three types of representation of the tree given below:							
	(ii)	Give other three types of representation of the							
		(A(B(E)(F))(C(G)(H)(I))(D(J(L)(M)(N))(K)))							
	as dire	cted:	ne						
(1)	True/False: "Every binary operation defined on any set A having only one element is both commutative and associative."								
(2)	A gr	oup G in which $(ab)^2 = a^2b^2$ for all a, b in G is necessarily							
	(a)	evelie (b) abelian (c) finite (d) none of these	,						
(3)		element has no multiplicative inverse in group <2, *>.							
		0 (b) 1 (c) -1 (d) none							
(4)	If ·*	is defined on the set of real numbers R by $a * b = \sqrt{a^2 + b^2}$, the identity	ify						
	elem	ent of R with respect to '* is							
	(a)	0 (b) 1 (c) -1 (d) none							
(5)	A tro	e is graph with no							
	(a)	loop (b) vertex (c) cycle (d) edge							
(6)	Is th	ere a simple graph with degree sequence (0, 2, 2, 3, 4) ? [Yes/No]							
(7)	A ve	rtex is said to be vertex if its total degree is 7.							

(1)	A VEHEN 15 Sai	a to be		_ vertex if its total degree is /,		
	(a) even			(5) 4 55 0 00011	(d)	none of these
(8)	If one row of	the incid	lence r	matrix of a graph has all entries	0, v	vhat information
	can you deduc	e about 1	he grai	nh ?		

n

Let A = {1, 2, 3, 4, 5}. Let R be a relation on A defined by $R = \{(a - 1, a + 1)/a \in A\}$. Find the range of R.

(10) True/False: " $\{x/x > 5\}$, $\{x/x < 5\}$ is a partition of the set of real numbers."

(11) Find the maximal and minimal elements of set $P = \{2, 3, 5, 7, 11, 13\}$, ordered by

(12) True/False: "There is no horizontal line in a Hasse diagram of a POSET."

(13) In a Boolean algebra (S₃₀, *, \oplus , ', 0, 1), 5 * 15 = _

(14) Anti-atoms are immediate predecessor of greatest element ____ (a) 0 (b)

5.