Seat No.:

JA-101

June-2022

B.B.A., Sem.-II

CC-112: Business Mathematics

Time: 2 Hours]

[Max. Marks: 50

Instructions:

- (i) All questions in Section-I carry equal marks.
- (ii) Attempt any two questions in Section-I.
- (iii) Question 5 in Section-II is Compulsory.
- (iv) Use of simple calculator is allowed.

1. (A) (i) Define the derivative of a function. Also state the rules of differentiation.

11.

5

- (ii) Find the derivatives of the following function with respect to x.
 - (a) $y = \log (10x^3 + 3x^2 + 8x + 1)$
 - (b) $y = \frac{e^{5x}}{x+1}$

(B) (i) The total cost function of a commodity with output x units is $C = x^2 + 4x + 4$. Find (a) Average cost (b) Marginal Cost

(ii) The demand law for a commodity is $x = 2P - P^2$. Calculate the elasticity of demand at P = 1.

2. (A) (i) If $y = a \cdot e^{mx} + b \cdot e^{-mx}$ prove that $\frac{d^2y}{dx^2} = m^2y$.

(ii) Find the maximum and minimum values of the following function:

$$f(x) = x^3 - 12x^2 - 144x + 10$$

(B) (i) If $f(x, y) = x^3 + x^2y + xy^2 + y^3$, find $\frac{\partial f}{\partial x}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial y^2}$.

(ii) The demand function of a commodity is $P = 50 - \frac{5}{2}x$. Determine demand and price for maximum revenue.

5

- 3. (A) (i) Define the following terms:
 - (a) Square matrix
 - (b) Diagonal matrix
 - (c) Column matrix
 - (d) Scalar matrix
 - (e) Zero matrix

(ii) If
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 2 & 3 \\ 5 & 6 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ find $A + B$ and $A - B$.

5

5

5

10

(B) (i) If
$$P = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
, and $Q = \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}$, verify that $(PQ)' = Q'P'$.

(ii) If
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$$
, verify that $A(\text{adj } A) = |A| I_2$.

- 4. (A) (i) Find the simple interest on ₹800 for 3 years at 5% per annum. Also find the amount.
 - (ii) What is an aggregate amount for ₹ 4,000 at 12% rate of Compound interest for 3 years if the interest is compounded every six months?
 [(1.06)⁶ = 1.418519]
 - (B) (i) Find the present value of $\stackrel{?}{=}$ 2,000 p.a. for 14 years at 10% p.a. rate of interest. $[(1.1)^{-14} = 0.2632]$
 - (ii) If a sum of ₹ 5,000 is deposited with a Shroff at the end of every year for 10 years at 15% compound rate of interest. Find out the total amount of annuity at the end of 10 years. [(1.15)¹⁰ = 4.0456]
- 5. Answer the following: (Any Ten)
 - (1) If $f(x) = x^9 8x^2 + 1$, then f'(1) =_____.
 - (a) -7

(b) 3

(c) 7

- (d) None
- (2) When elasticity of demand is _____ 1, the demand is said to be relatively elastic.
 - (a) >

(b) <

(c) =

(d) None

- (3) If $y = 3^x$, then $\frac{dy}{dx} = _____$
 - (a) 3^x

(b) $3^x \cdot \log_e 3$

(c) $\log_e 3$

- (d) None
- (4) If $y = \frac{1}{x^7}$, then $\frac{dy}{dx} = _____$
 - (a) $7x^6$

(b) $-7x^{-8}$

(c) x^{-7}

- (d) None
- (5) If Z = 3x + 9y then $\frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$
 - (a) 3

(b) 9y

(c) 9

- (d) None
- (6) If $y = x^3 8x^2 + 9$ then $\frac{d^2y}{dx^2} =$ _____
 - (a) $3x^2 18x$

(b) $x^3 - 8x^2$

(c) 6x - 16

- (d) None
- (7) The budget equation I = _____.
 - (a) xPx + yPy

(b) xPx

(c) yPy

- (d) None
- (8) If |A| = 0, A^{-1} is possible.
 - (a) True

- (b) False
- (9) If $A = \begin{bmatrix} -5 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -5 \end{bmatrix}$, the type of matrix is ______
 - (a) Square

(b) Diagonal

(c) Scalar

(d) All

(10) If $A =$	Γ1	2	3	then $(A')^1 =$
	0	1	5	

 $\begin{bmatrix}
1 & 2 & 3 \\
0 & 1 & 5
\end{bmatrix}$

(b) \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 5 \end{pmatrix}

(c) $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$

None (d)

(11) If
$$x = [1 \ 1 \ 2]$$
 and $y = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, then $xy = \underline{\qquad}$.

(a) $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$

[3]

(d) None

A money lender is called

Creditor (a)

Debtor

Amount (c)

None (d)

(13) What is the amount of, perpetual annuity of ₹ 60 at 6%. Compound interest per year?

₹ 10 (a)

₹ 36 (b)

₹ 1000 (c)

(d) None

(14) The formula of annuity in case of Sinking fund is

- $A = \frac{a}{i} [(1+i)^{n} 1]$ (b) $P = \frac{a}{i} \left[1 \frac{1}{(1+i)^{n}} \right]$ $A = (1+i) \frac{a}{i} [(1+i)^{n} 1)]$ (d) None

(15) An annuity in which payments of installments are made at the end of each period then it is called

- ordinary annuity
- annuity immediate (b)

(a) & (b) (c)

(d) None