OD-103

October-2019

B.B.A., Sem.-V

Operation Research and Quantitative Techniques (Q.T.)

Time: 2:30 Hours]

[Max. Marks: 70

Instructions:

- (1) Graph paper will be supplied on request.
- (2) Use of simple calculator is allowed.
- 1. (A) (i) Convert the given LPP into dual problem

Max.:

$$Z = 3x_1 + 2x$$

Subject to,

$$-x_1-x_2 \leq -$$

$$x_1 + x_2 \le 7$$

$$x_1 + 2x_2 \le 10$$

$$x_2 \leq 3$$

$$x_1, x_2 \ge 0$$

(ii) Use graphical method to solve the LPP.

$$Z = 3x_1 + 2x_2$$

$$5x_1 + x_2 \ge 10$$

$$x_1 + x_2 \ge 6$$

$$x_1 + 4x_2 \ge 12$$

$$x_1, x_2 \ge 0$$

OR

- (i) What is Linear Programming? Give its Mathematical formulation.
- (ii) A company produces 2 types of hats A and B. Every hat A requires twice as much labour time as the second hat B. If the company produces only hat B then it can produce a total of 500 hats per day. The market limits daily sales of hat A and B to 150 and 250 respectively. The profits on hat A and B are ₹ 8 and ₹ 5 respectively. Solve graphically to get the optimal solution.

. 7

7

- (B) Answer the following: (any four)
 - Define objective function. (i)
 - Most of constrains in LPP are expressed as __ (ii)
 - (iii) What do you mean by unbounded solution?
 - (iv) Define O.R.
 - LPP involving only two variables can be solved by _____. (v)
 - (vi) All variables in LPP must take non-negative values. (True/False)
- Obtain a basic feasible solution of the following transportation by (A) (i) 2.
 - North-West Corner Rule. (a)
 - Least Cost Method. (b)

	A	В	C	D	Supply
0,	5	6	8	10	10
O_2	10	8	6	4	15
O ₃	2	5	7	11	25
Demand	15	10	10	15	

Obtain initial basic feasible solution of the following transportation problem by Vogel's method. Also find optimal solution.

	A	В	C	Supply
I	18	22	10	20
II	25	11	20	22
III	15	30	7	18
Demand	16	21	23	
		-		

OR

- Explain North-West Corner Rule for solving Transportation problem. (i)
- Obtain an optimal basic feasible solution to the following transportation problem.

		P	Q	R	S	Supply
_	A	21	16	25	13	11
	В	17	18	14	23	13
-	C	32	17	18	41	19
	Demand	6	10	12	15	43

- (B) Answer the following. (any four)
 - If total supply _____ total demand, then dummy column is added to make it balance.
 - What do you mean by balanced T.P.? (ii)

OD-103

		(iii)	is taken into consideration for allocation in LCM of solving 1.F.	
		(iv)	Test of optimality can be done by method.	
		(v)	The solution to transportation problem with m rows and n columns is non-	
			degenerate if No. of occupied allocations are equal to	
		(vi)	What is basic condition for applying MODI method?	
3.	(A)	(i)	State the differences between PERT and CPM.	7
		(ii)	Find critical path, also find EFT, LFT and float time.	7
			Activity 1-2 1-3 1-4 2-5 3-5 4-6 5-6 6-7	
			Time 2 4 3 1 6 5 7 2	
			OR	
		(i)	State the advantages of PERT.	7
		(ii)	Time estimates and predecessor of each activity in a project are given	
		, ,	below. Find free float for each activity.	7
			Activity A B C D E F G	
			Predecessor – A A B, D C, E	
			Time 2 1 3 2 3 3 2	
	(B)	Ansv	ver the following: (any three)	3
		(i)	Define Activity.	
		(ii)	CRM, it is divided into different	
			The objective of network analysis is to minimize total project cost.	
		1	(True/False).	
		(iv)	In PERT the completion of an activity is called .	
		(v)	PERT was develop by U.S. Navy in year.	
4.	(A)	(i)	Solve the following Payoff matrix, determine optimal strategies and value	
			of game.	
			y	
			[4 1]	
			$x\begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$,
		(ii)	Solve the following assignment problem for minimum cost.	,

		1		3	4
	Α	10	12	19	11
	В	5	10	7	8
-	C	12	14	13	11
-	D	8	15	11	9

OR

- (i) Explain Minimax and Maximin principle used in the theory of games.
- (ii) Solve the following assignment problem.

۰	C the rone time and					
		X	Y	Z		
	A	16	20	20		
	В	12	13	16		
	С	18	20	15		
	D	16	14	17		

- (B) Answer the following. (any three)
 - (i) The values of _____ are used to reduced the size of payoff matrix.
 - (ii) What is saddle point?
 - (iii) All dummy rows or columns in the Assignment problem are assumed to be zero. (True/False)
 - (iv) What do you mean by unbalanced assignment problem?
 - (v) Solving method of Assignment problem is called