Seat No.	:	
----------	---	--

AC-135

April-2019

B.Sc., Sem.-II

103 : Statistics (Probability Theory) (New Course)

Time: 2:30 Hours]	Max.	Marks:	70
-------------------	------	--------	----

Instructions: (1) Scientific calculator is permitted

(2) Statistical table is provided.

- 1. (A) (1) Explain: (i) Mutually exclusive events.
 - (ii) Independent events
 - (iii) Union events
 - (2) Explain Bayes' theorem in detail.

OR

- (1) State and prove multiplication rule of probability.
- (2) Define classical, relative and axiomatic concept of probability.
- (B) Attempt any four:
 - (1) The outcome of tossing coin is a
 - (a) simple event

- (b) mutually exclusive event
- (c) complementary event
- (d) compound event
- (2) Probability can take values
 - (a) $-\infty$ to ∞

(b) $-\infty$ to 1

(c) -1 to 1

- (d) 0 to 1
- (3) The probability of the intersection of two mutually exclusive events is always
 - (a) infinity

(b) zero

(c) one

- (d) None of the above
- (4) If $B \subset A$, the probability P(A/B) is equal to
 - (a) zero

(b) one

(c) P(A)/P(B)

(d) P(B)/P(A)

		(5)	Class	sical probability is also known as	S	
			(a)	Laplace's probability	(b)	Mathematical probability
			(c)	a priori probability	(d)	All of the above
		(6)	If A	® □	bility (of occurrence of either A or B is
			(a)	P(A) + P(B)	(b)	$P(A \cup B)$
			(c)	$P(A \cap B)$	(d)	$P(A) \cdot P(B)$
2.	(A)	(1)	Expl		types	and explain probability mass
		(2)	Defi	ne mathematical expectation. Sta	ite proj	perties of it.
		(1)	D.C.	OR		to (a) Contact I was a series
		(1)		ne (a) raw moments, (b) central r		
		(2)	State	and prove properties of moment	t gener	ating function.
	(B)	Atter	nnt ar	ny four :		
	(D)	(1)		es of a random variable are		
		(-)	(a)	always positive numbers	(b)	always positive real numbers
			(c)	real numbers	(d)	natural numbers
		(2)	If X	& Y are independent then		
			(a)	$E(XY) = E(X) \times E(Y)$	(b)	E(XY) = E(X) + E(Y)
			(c)	E(X+Y) = E(X) + E(Y)	(d)	None of the above
		(2)	ъ п			
		(3)		form of C.G.F. is	(1.)	
			(a)	Cumulant Generating Function		Complete Generating Function
			(c)	Complete Generating Form	(d)	Cumulant Generating Format
		(4)	A dis	screte variable can take a n	umber	of value within its sense.
			(a)	finite	(b)	infinite
			(c)	0	(d)	1
		(5)				
A		(5)		osis is denoted by	(1.)	0
			(a)	α	(b)	β
			(c)	γ	(d)	None of the above
		(6)	In a	symmetrical distribution skewne	ss is _	
			(a)	1	(b)	0
			(c)	2	(d)	3
AC-1	35			2		

- 3. (A) (1) State and prove Boole's inequality.
 - (2) State and prove Bonferroni's inequality.

OR

- (1) State and prove Cauchy Schwarz inequality.
- (2) Explain concept of convex and concave functions.
- (B) Attempt any three:
 - (1) Boole's inequality is also known as
 - (a) Union bound

(b) Intersection bound

(c) Both (a) & (b)

- (d) None of these
- (2) Boole's inequality may be generalized to find upper and lower bounds are known as
 - (a) Bonferroni's inequalities
- (b) Markov's inequalities
- (c) Jensen's inequalities
- (d) None of these
- (3) Jensen's inequality relates the value of a
 - (a) Convex function
- (b) Concave function
- (c) Linear function
- (d) None of these
- (4) Which measure of dispersion is used in Chebyshav's inequality?
 - (a) Range

- (b) Qualitile deviation
- (c) Standard deviation
- (d) Mean deviation
- (5) In Markov's inequality which random variable is considered?
 - (a) Non-negative

(b) Negative

(c) (a) & (b) both

- (d) None of these
- 4. (A) (1) The joint probability distribution of two random variables X & Y is given by P (X = 0, Y = 1) = (1/3), P(X = 1, Y = (-1) = (1/3) and P(X = 1, Y = 1) = (1/3). Find marginal distribution of X & Y and also find the conditional probability distribution of X, given Y = 1.
 - (2) Explain joint probability mass function and Joint probability density function.

OR

(1)	Explain marginal	and conditional	distributions.
-----	------------------	-----------------	----------------

- (2) For the adjoning bivariate probability distribution of X & Y find
 - (1) $P(X \le 1, Y = 2)$
 - $(2) \quad P(X \le 1)$
 - (3) $P(Y \le 3)$

(B) Attempt any three:

- (1) Joint distribution function of (X, Y) is equivalent to the probability
 - (a) P(X = x, Y = y)
- (b) $P(X \le x, Y \le y)$
- (c) $P(X \le x, Y = y)$
- (d) $P(X \ge x, Y \ge y)$
- (2) The conditional discrete distribution function F X/Y (x/y) is equal to _____
 - (a) $\sum_{xi \le x} P X/Y (xi/y)$
- (b) $\sum_{xi \geq x} P x/y (xi/y)$

(c) (a) & (b) both

- (d) None of these
- (3) If X & Y are independent variables, then
 - (a) $E(XY) = E(x) \cdot E(y)$
- (b) E(XY) = 0
- (c) Cov(X, Y) = 0

- (d) None of these
- (4) If 'd' is any constant then E(d) =
 - (a) 0

(b) d

(c) 1

- (d) D
- (5) Conditional variance of X given Y is denoted by
 - (a) $\sigma^2 x/y$

(b) $\sigma^2 y/x$

(c) σ^2

(d) None of these

Seat No.	:
----------	---

AC-135

April-2019

B.Sc., Sem.-II

103 : Statistics (Basic Probability Theory – I) (Old Course)

				(Old C	Course)	<i>J</i> – <i>j</i>	
Tim	e: 2:	30 H	ours]				[Max. Marks: 7
Inst	ructio	ns:	(1) (2)	Scientific calculator is per Scientific table is provide			
1.	(A)	(1)		e the relative and absolution its and demerits of mean de		of dispersion a	and describe the
		(2)		at is raw moments and conveen raw moments and cen			the relationship
				OF			
		(1)	Stat	e properties and uses of Sk	ewness.		
		(2)	Wri	te a short note an Kurtosis.			
	(B)	Atte	mpt a	ny four :			
		(1)	Ran	ge =			
			(a)	maximum value – minim	num value.		
			(b)	minimum value – maxim	num value.		
			(c)	maximum value + minin	num value.		
			(d)	None of these.			
		(2)	Wh	ich one of the given measu	re of dispersi	on is considered	best ?
			(a)	Standard deviation	(b)	Range	
	7		(c)	Variance	(d)	None of these	

(b) -3

(d) 1

For a leptokurtic curve the B2 = ____

(a) 0

(c) 3

	(4)	For a negative	rect inequality is						
		(a) mode <	median	(b)	mean < median				
		(c) mean <	mode	(d)	None of these				
	(5)	If the quartile	deviation of a series	is 60, the	mean deviation of this is				
	()	(a) 72		(b)	48				
		(c) 50		(d)	75				
	(6)	Formula for co	pefficient of variation	n is					
	(0)				mean				
		(a) $C.V. = \frac{1}{r}$	$\frac{3.D.}{\text{mean}} \times 100$	(b)	$C.V. = \frac{\text{mean}}{S.D.} \times 100$				
		(c) $C.V. = \frac{r}{r}$	$\frac{\text{mean} \times \text{S.D.}}{100}$	(d)	$C.V. = \frac{100}{\text{mean} \times \text{S.D.}}$				
(A)	(1)	Explain pair- probability.	wise and mutual	indeper	ndence events of conditional				
	(2) Three machines in a factory produce respectively 20%, 50% and 30 items daily. The percentage of defective items of these machines are and 5 respectively. An item is taken at random from the production a found to be defective. Find the probability that it is produced by machinom. OR								
	(1)	For any three		prove P	$(A \cup B/C) = P(A/C) + P(B/C) -$				
		$P(A \cap B/C)$							
	(2)	Explain Bayes	theorem in detail.						
(B)	Atte	npt any four :							
	(1)		nt, the conditional pro	obability	of A given A is equal to				
		(a) 0		(b)	1				
		(c) infinite		(d)	None of these				
	(2)	P(A/B) =							
		(a) $\frac{P(A \cap B)}{P(B)}$	<u>)</u>	(b)	$\frac{P(A \cap B)}{P(A)}$				
7		(c) $\frac{P(A \cap B)}{1}$	<u>)</u>	(d)	None of these				
1	(2)	Dovos' theore	m ia autonairiale, esa	din					
	(3)	rana ⁿ un a a	m is extensively used		- Drobobility				
			al inference	(b)	Probability None of these				
		(c) Manage	ment	(d)	INOTIC OF THESE				

6

AC-135

		(4)	We o	an say Bayes' theorem as	23	
			(a)	Inverse Probability Rule	(b)	Multiplication Rule
			(c)	Addition Rule	(d)	None of these
		(5)	If A	\subset B, the probability P(A/B) is ed	qual to	
			(a)	0	(b)	1
			(c)	P(B)/P(A)	(d)	P(A)/P(B)
		(6)	If A	& B are two independent events.	then	$P(A \cap B)$ is equal to
			(a)	$P(A) \cdot P(B)$	(b)	$1 - P(A' \cup B')$
			(c)	All of the above	(d)	None of these
3.	(A)	(1)	Disc	uss the components of time serie	S.	
		(2)	Write	e a note on moving average meth	nod.	
				OR		
		(1)	Expl	ain the principle of least squares		
		(2)	Wha	t is the difference between ratio	to tre	end and ratio to moving average
			meth	od of measuring seasonal variati	ons in	time series.
	(B)	Atter	npt an	ny four :		
		(1)	Shor	t term variations are classified as		
			(a)	seasonal	(b)	cyclical
			(c)	(a) & (b) both	(d)	None
		(2)	Whic	ch component is associated with	recess	
			(a)	Trend	(b)	Cyclical
			(c)	Seasonal	(d)	Irregular
		(3)	Diwa	ali sales in a store is related with		
			(a)	Trend	(b)	Cyclical
		A	(c)	Seasonal	(d)	None
		A				
		(4)		many components are there in a		
			(a)	5	(b)	3
A			(c)	4	(d)	6
		7 = 5	ret.			
7		(5)	1020120	trend component is easy to ident		
			(a)	moving average	(b)	exponential smoothly
			(c)	Regression analysis	(d)	Delphi approach

4.	(A)	(1)	What is the meanin	g of Decision	on theo	ry?Ex	plain the	e elements of it.		
		(2)	Write a short note on minimax principle and Laplace principle with illustrations.							
				OF	R				23	
		(1)	Write a short note theory.	on expecte	d mone	etary va	alue wit	h reference to d	ecision	
		(2)	A fruit-seller sells useless. One apple following details fit	cost ₹ 20	and the	e seller	receive	es ₹ 50 for it. Fr		
			Units sold per day	10	11	12	13			
			Probability of sale	0.15	0.20	0.40	0.25			
	(B)	Atte	mpt any three:							
		(1)	Maximax principle	is known a	S					
			(a) Optimism			(b) I	Pessimis	sm		
			(c) Equally likely	y		(d) 1	Vone			
		(2)	The full form of EN	/IV is	-					
			(a) Expected Mo	netary Valu	ie	(b) I	Expected	d Money Value		
			(c) Expected Me	an Value		(d) 1	None of	these		
		(3)	EOL means							
			(a) Expected Op	portunity L	oss	(b) I	Expected	d Opportunity Li	st	
			(c) Expected Op	tional Loss		(d) 1	None of	these		
		(4)	Which formula is u	sed for Hur	wicz's	princip	le?			
			(a) $(\alpha) \times (\text{maxim})$	um pay off)+(1-	α) (mi	nimum	pay off)		
			(b) (α) + (maxim	um pay off)+(1-	α) + (1	minimuı	m pay off)		

 $(5) \quad \text{EVPI} = \underline{\qquad}$ $(2) \quad \text{EPPI} = E$

(a) EPPI – EMV

(b) EPPI – Maximum value

(c) EPPI – Minimum value

(d) None of these

AC-135 8