Seat	No.	:	
Seat	NO.	•	

DH-106

December-2022

B.Sc., Sem.-III

CC-201: Statistics

(Distribution Theory-1) (New)

Tim	e: 2.30	0 Hours] [Max. Marks : 7	[Max. Marks: 70	
1.	(A)	Derive mean and variance of discrete Uniform distribution.	7	
1.	(A)			
	(B)	The mean and variance of Binomial distribution are 4 and 4/3 respectively. Find	7	
		$p(X \ge 1)$.	,	
		OR		
	(A)	Derive mean and variance of Poisson distribution.	7	
	(B)	Derive mean and variance of truncated Binomial distribution.	7	
2.	(A)	Derive cumulant density function, moment generating function and characteristic	_	
		function of Exponential distribution.	7	
	(B)	Derive any two properties of Rectangular distribution for continuous variable.	7	
		OR		
	(A)	Derive mean and variance of Beta type-2 distribution.	7	
	(B)	State and prove additive property of Gamma distribution.	7	
	(2)			
3.	(A)	Define probability distribution function of a random variable. State and prove the		
		properties of distribution function.	7	
	(B)	Define Discrete random variable, probability mass function and continuous		
		distribution function.	7	
		OR		
P.		Define Jacobian of transformation. State its uses in probability distribution		
	(A)		7	
		theory.	1	
	(B)		,	
		independent random variable.		
DE	I-106	1 P.7	U.J	

4.	(A)	Let X ₁ , X ₂ ,, X _n be a random sample of size n from Uniform distribution with
		parameter a and b. obtain the pdf of first order statistic and nth order statistic.
	(B)	Let X ₁ , X ₂ ,, X _n be order statistics then obtain the distribution of min X(i),
		where $1 \le i \le n$ and max $X(i)$, where $1 \le i \le n$.
		OR
4.	(A)	Prove that Negative Binomial as compound distribution of Poisson and Gamma distribution.
	(B)	Prove that Poisson as compound distribution of Binomial and Poisson distribution.
5. Atte		mpt any seven out of twelve:
	(1)	Give second name of Uniform distribution and write probability mass function of
		it.
	(2)	Define Bernoulli trials.
	(3)	Write cumulants of Poisson distribution.
	(4)	State mean and variance of truncated Poisson distribution.
	(5)	Define Jacobian of transformation.
	(6)	Define conditional probability function.
	(7)	Define marginal probability function.
	(8)	Define Joint probability mass function. When two random variables are said to be
		independent?
	(9)	Compute the following ratio: $\Gamma(16/3) / \Gamma(10/3)$
	(10)	Write any two uses of Order statistics.
	(11)	Write any two differences between discrete distribution function and continuous
		distribution function.
	(12)	Write mean and variance of Beta type-1 distribution.