Seat	No.	:	
------	-----	---	--

[Max. Marks: 70

NB-104

November-2022

B.Sc., Sem.-V

301: Mathematics (Linear Algebra – II)

Prove that L(U,V) is a vector space.

(A)

- If a linear map T: $\mathbb{R}^3 \to \mathbb{R}^2$ is definded as T(x, y, z) = (x + y, 2y + z); $(x, y, z) \in$ R^3 then Solve the operator equation T(x, y, z) = (2, 4).
- State and prove the Cauchy-Schwarz inequality. 2.
 - Prove that the following defines as inner product on R²: (B) $\langle u, v \rangle = x_1 y_1 - x_1 y_2 - x_2 y_1 + 3x_2 y_2$; where $u = (x_1, x_2), v = (y_1, y_2) \in \mathbb{R}^2$. OR
 - Prove that every orthogonal set in an inner product space is Linearly independent.
 - (B) Apply the Gram-Schmidt orthogonalization process to the basis $B = \{(-1, 1, 1), (1, -1, 1), (1, 1, -1)\}$ in order to get orthogonal basis for \mathbb{R}^3 .
- (A) For matrix $A = (a_{ij}) \in M_n$, in usual notation prove that 3.

$$\det A = \sum_{f \in S_n} (sgn f) a_{f(1)1} a_{f(2)2}, ... a_{f(n)n}.$$

- State (only) the Cramer's rule and using it solve 2x + y = 2, 3y + z = 1 and 4z + x = 5. 7
- In usual notation prove that det(AB) = det A. det B.
- Using the properties of determinants, prove that det A = 4abc.

where
$$A = \begin{bmatrix} b+c & b & c \\ a & a+c & c \\ a & b & a+b \end{bmatrix}$$

- (A) Prove that distinct Eigen vectors of T∈ L(U,V) co-responding to distinct Eigen values of T are Linearly independent.
 - 7
 - (B) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ 2 & 1 & 4 \end{bmatrix}$ and hence find A^{-1} . 7

OR

- (A) Prove that the eigen values of symmetric linear transformation are real.
- 7
- (B) Let $A = \begin{bmatrix} 11 & -8 & 4 \\ -8 & -1 & -2 \\ 4 & -2 & -4 \end{bmatrix}$ be a real symmetric matrix. Find an orthogonal matrix P
- 7

- such that $D = P^{-1} AP$ is a diagonal matrix.
- 5. Answer in Short: (Attempt any SEVEN)

14

- (1) Define the Dual basis and Dual space.
- (2) If linear transformation $T: R^3 \to R^2$ and $S: R^3 \to R^2$ defended as T(x, y, z) = (x + y, 2y + z); and S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then find T + S and S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then find T + S and S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then find T + S and S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then find T + S and S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then find T + S and S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then find T + S and S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then find T + S and S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then find T + S and S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then S(x, y, z) = (x 3y, 2y z); $\forall (x, y, z) \in R^3$, then S(x, y, z) = (x 3y, 2y z);
- (3) Define Homogeneous and non-homogeneous Linear Operator.
- (4) Define inner product on a vector space V and a norm of a vector in an inner product space.
- (5) State (only) triangular inequality and parallelogram law.
- (6) If $(R^2, \langle u, v \rangle)$ is an inner product space, where $\langle u, v \rangle = x_1y_1 x_1y_2 x_2y_1 + 3x_2y_2$

$$u = (x_1, x_2), v = (y_1, y_2) \in \mathbb{R}^2$$
 then find the norm of vector $x = (5, 2)$.

- (7) State (only) the Laplace's expansion for det A.
- (8) If $f = \begin{pmatrix} 1234567 \\ 3451726 \end{pmatrix}$; $g = \begin{pmatrix} 1234567 \\ 2546173 \end{pmatrix} \in S_7$ then find fog, (gof)⁻¹.
- (9) If $A = \begin{bmatrix} 1 & -5 & 3 \\ 2 & 8 & -4 \\ 3 & 4 & -2 \end{bmatrix}$ then find trace of matrix A and A^{T} .
- (10) Define eigen values and eigen vectors of a linear operator.
- (11) Define symmetric linear transformation.
- (12) Define non-singular matrix.