Seat No. :

MB-110

March-2018

B.Sc., Sem.-V

CC-301 : Mathematics (Linear Algebra-II)

Time : 3 Hours]

[Max. Marks : 70

Instructions : ((i)	Notations are us	sual everywhere.
------------------	-----	------------------	------------------

- (ii) All the questions are compulsory and carry of 14 marks.
- (iii) The right hand side figures indicate marks of the question/sub-question.
- 1. (A) If $T : U \to V$ is linear map, $v_0 \in R(T)$ and if $T(u) = \overline{0}_V$ has a non-trivial solution $u_0 \neq \overline{0}_U$ then prove that $T(u) = v_0$ has an infinite solution set namely $u_0 + N(T)$. 7

OR

Define a linear functional and show that the trace function tra : $\mu_{n,n} \rightarrow R$ defined

as traA =
$$\sum_{i=1}^{n} a_{i, i, i}$$
 for each matrix A = $(a_{ij}) \in \mu_{n, n}$ is linear function.

(B) If a linear map $T : V_3 \to V_3$ is defined as $T(e_1) = e_1 + e_2$, $T(e_2) = e_2 + e_3$, $T(e_3) = e_3 + e_1$ then solve the operator equation $T(x_1, x_2, x_3) = (4, 6, 8)$. 7

OR

Find the dual basis of the basis $B = \{(1, 2, 0), (0, 1, 2), (2, 0, 1)\}$ for the vector space V_3 .

2. (A) Prove that a finite dimensional inner product space has an orthogonal basis.

OR

State and derive the Cauchy-Schwarz inequality.

If for $x = (x_1, x_2)$, $y = (y_1, y_2) \in \mathbb{R}^2$ the map \langle , \rangle is defined as

 $<x, y>= y_1 [x_1 - x_2] + y_2 [2 x_2 - x_1]$ then show that <, > is an inner product on R². 7

OR

Apply the Gram-Schmidt orthogonalization process on the set

A = {(0, 1, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)} in order to get orthogonal set in V₄.

1

MB-110

(B)

P.T.O.

- 3. (A) If $i \neq j, \alpha \in R$ and if det : $V^n \rightarrow R$ is a function satisfy the expected properties of the determinant then prove the followings :
 - (i) det $(v_1, v_2, ..., v_i, ..., v_j, ..., v_n) = \det(v_1, v_2, ..., v_i + \alpha v_j, ..., v_j, ..., v_n)$
 - (ii) det $(v_1, v_2, ..., x_j + y_j, ..., v_n) = det (v_1, v_2, ..., x_j, ..., v_n) + det (v_1, v_2, ..., y_j, ..., v_n)$ OR

State the prove the Cramer's rule for solving a system of linear equations.

(B) If A =
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & 4 & 5 \\ 2 & 3 & 1 & 4 \\ 1 & 0 & -1 & 3 \end{pmatrix}$$
 then find detA by applying the Laplace Expansion about

the second row of the matrix A.

	JK		
(x + a)	b	c	d
a	<i>x</i> + b	c	d
a	b	<i>x</i> + c	d
a	b	c	x + d
	$ \begin{pmatrix} x + a \\ a \\ a \\ a \end{pmatrix} $	$ \begin{array}{ccc} \mathbf{OR} \\ (x+a & b) \\ a & x+b \\ a & b \\ a & b \end{array} $	$ \begin{array}{ccccccc} & & & & & & \\ x+a & b & c \\ a & x+b & c \\ a & b & x+c \\ a & b & c \\ \end{array} $

then compute detA without expansion.

- 4. (A) Express the characteristic equation of 2×2 matrix A in terms of Trace of A and det A. Also prove that a 2 x 2 real and symmetric matrix has only real eigen values.
 - OR

State and prove the Cayley-Hamilton's Theorem.

(B) Diagonalize the matrix $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.

Also find the modal matrix which diagonalizes A.

Identify the quadric in \mathbb{R}^3 given by $f(x, y, z) = 4xz + 4y^2 + 8y + 8 = 0$.

- 5. Answer any **seven** of the following questions in short :
 - (1) Define a scalar multiple of a linear map and composition of linear maps.
 - (2) Define homogeneous and nonhomogeneous operator equations.
 - (3) State the dual basis existence theorem.
 - (4) State the triangle inequality.
 - (5) Define an orthogonal linear map.
 - (6) State any two of the three expected properties of the determinant mapping.

Without expansion find detA if A =
$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 5 & 4 & 3 \end{bmatrix}$$

(8) Define eigen value and eigen vector of an endomorphism.

(9) Define : (i) eigen basis (ii) Diagonalizable matrix.

MB-110

14

7

7

7

MB-110