\qquad

MC-115

March-2018
B.Sc., Sem.-V

CC-302 : Mathematics

(Analysis-I)

Time : 3 Hours]

[Max. Marks : 70
Instructions: (i) There are $\mathbf{5}$ questions in this paper. All questions are compulsory.
(ii) Figures to the right indicate full marks of the question/sub-question.
(iii) Notations used in this question paper carry their usual meaning.

1. (a) Prove :
(i) Show that the set $\mathrm{N} \times \mathrm{N}$ is countable.
(ii) Suppose that A and B are non-empty subsets of R that satisfy the property : $\mathrm{a} \leq \mathrm{b}$ for all $\mathrm{a} \in \mathrm{A}$ and all $\mathrm{b} \in \mathrm{B}$. Then prove that $\sup \mathrm{A} \leq \inf \mathrm{B}$.

OR

Let $\mathrm{f}(x)=\frac{1}{x^{2}}, x \neq 0, x \in$ R. (i) Determine the direct image $\mathrm{f}(\mathrm{E})$ where $\mathrm{E}=\{x: 1 \leq x \leq 2\}$. (ii) Determine the inverse image $\mathrm{f}^{-1}(\mathrm{G})$ where $\mathrm{G}=\{x: 1 \leq x \leq 4\}$.
(b) Prove that there is a real number x such that $x^{2}=2$.

OR

Let S be a subset of R which is bounded above and $a \in R$. Then let $a+S=\{a+s: s \in S\}$. Prove that $\sup (a+S)=a+\sup S$.
2. (a) Show by definition that the sequence $\left\{x_{n}\right\}$ defined by $x_{n}=\frac{3 n+4}{2 n}$ is convergent. For $\in=0.001$, find the smallest positive integer n which satisfies the condition of definition.

OR

Suppose that $\lim _{\mathrm{n} \rightarrow \infty} x_{\mathrm{n}}=\mathrm{a}$ and $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{y}_{\mathrm{n}}=\mathrm{b}$. If $\mathrm{b} \neq 0 \mathrm{y}_{\mathrm{n}} \neq 0$ for all $\mathrm{n} \in \mathrm{N}$, then prove that the sequence $\left\{\frac{x_{n}}{y_{n}}\right\}$ is convergent, and $\lim _{\mathrm{n} \rightarrow \infty} \frac{x_{\mathrm{n}}}{y_{n}}=\frac{a}{b}$.
(b) If $\mathrm{S}_{\mathrm{n}}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{\mathrm{n}!}$, then prove that $2<\mathrm{S}_{\mathrm{n}}<3$. And hence prove that it is convergent.

OR
Prove that a is a cluster point of sequence $\left\{x_{\mathrm{n}}\right\}$ iff for every $\in>0$ and any $\mathrm{n}_{0} \in \mathrm{~N}$, there exists $\mathrm{n} \geq \mathrm{n}_{0}$ such that $\left|x_{\mathrm{n}}-\mathrm{a}\right|<\epsilon$.
3. (a) State and prove Extreme Value Theorem (EVT).

OR

Prove that a real valued function f is continuous at a if and only if for every sequence $\left\{x_{\mathrm{n}}\right\}$ in D_{f} with $x_{\mathrm{n}} \rightarrow \mathrm{a}, \mathrm{f}\left(x_{\mathrm{n}}\right) \rightarrow \mathrm{f}(\mathrm{a})$.
(b) Define removable discontinuity, jump discontinuity and $2^{\text {nd }}$ type of discontinuity. For $\mathrm{f}(x)=\frac{(x-1)|x-2|}{x^{2}-3 x+2}$, discuss the types of discontinuity of f .

OR
Determine whether the following functions are uniformly continuous or not?
(i) $\mathrm{f}(x)=\frac{1}{x}$ on $(0,1)$.
(ii) $\mathrm{f}(x)=\frac{1}{x}$ on $(\mathrm{a}, \mathrm{b}), \mathrm{a}>0$.
4. (a) State and prove Mean Value Theorem. Verify it for $\mathrm{f}(x)=\log x$ in [1, e].

OR
Suppose that f is defined on the open interval I and has a local maximum or local minimum at $\mathrm{c} \in \mathrm{I}$. Then if f is differential at c , prove that $\mathrm{f}^{\prime}(\mathrm{c})$ must equal zero. Discuss its application on $\mathrm{f}(x)=\sin x$.
(b) Evaluate:
(i) $\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-\mathrm{e}^{-x}-2 x}{\tan x-x}$
(ii) $\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)^{(1-\cos x)}$

OR

State and prove L' Hospital's first rule.
5. Attempt any SEVEN of the following in short :
(1) Give an example (if exists) of a set, which is superset of Q but countable.
(2) Give an example of a set whose lub does not exist but glb exists and belongs to the set.
(3) Find limit superior and limit inferior of the sequence $a_{n}=\sin \frac{n \pi}{4}$.
(4) Find cluster points of sequence $b_{n}=-n+(-1)^{n}$.
(5) Give an example of a function which is continuous but not uniformly continuous.
(6) Let $\mathrm{A}=\{x \in \mathrm{R}: x \neq 1\}$ and $\mathrm{B}=\{\mathrm{y} \in \mathrm{R}: \mathrm{y} \neq 2\}$; define $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{f}(x)=\frac{2 x}{x-1}$ for all $x \in \mathrm{~A}$. Show that f is injective.
(7) Apply Rolle's theorem (if applicable) to $\mathrm{f}(x)=\sin x$ on $[0, \pi]$ and find c as prescribed by the theorem.
(8) Evaluate $\lim _{x \rightarrow 0} \frac{2 \sin x-\sin 2 x}{x^{3}}$
(9) State Cauchy's Mean Value Theorem.

