Seat No. : _____

MC-115

March-2018

B.Sc., Sem.-V

CC-302 : Mathematics (Analysis-I)

Time : 3 Hours]

Instructions : (i) There are **5** questions in this paper. **All** questions are compulsory.

- (ii) Figures to the right indicate full marks of the question/sub-question.
- (iii) Notations used in this question paper carry their usual meaning.
- 1. (a) Prove :
 - (i) Show that the set $N \times N$ is countable.
 - (ii) Suppose that A and B are non-empty subsets of R that satisfy the property : $a \le b$ for all $a \in A$ and all $b \in B$. Then prove that sup $A \le \inf B$.

OR

Let $f(x) = \frac{1}{x^2}$, $x \neq 0$, $x \in \mathbb{R}$. (i) Determine the direct image f(E) where $E = \{x : 1 \le x \le 2\}$. (ii) Determine the inverse image $f^{-1}(G)$ where $G = \{x : 1 \le x \le 4\}$.

(b) Prove that there is a real number x such that $x^2 = 2$.

OR

Let S be a subset of R which is bounded above and $a \in R$. Then let $a + S = \{a + s : s \in S\}$. Prove that sup (a + S) = a + sup S.

2. (a) Show by definition that the sequence $\{x_n\}$ defined by $x_n = \frac{3n+4}{2n}$ is convergent. For $\in = 0.001$, find the smallest positive integer n which satisfies the condition of definition.

OR

Suppose that $\lim_{n \to \infty} x_n = a$ and $\lim_{n \to \infty} y_n = b$. If $b \neq 0$ $y_n \neq 0$ for all $n \in N$, then prove that the sequence $\left\{\frac{x_n}{y_n}\right\}$ is convergent, and $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}$. If $S_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$, then prove that $2 < S_n < 3$. And hence prove

(b) If $S_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$, then prove that $2 < S_n < 3$. And hence prove that it is convergent. **OR**

1

Prove that a is a cluster point of sequence $\{x_n\}$ iff for every $\in > 0$ and any $n_0 \in \mathbb{N}$, there exists $n \ge n_0$ such that $|x_n - a| \le \epsilon$.

MC-115

P.T.O.

[Max. Marks : 70

7

7

7

- 3. (a) State and prove Extreme Value Theorem (EVT).
 - OR

Prove that a real valued function f is continuous at a if and only if for every sequence $\{x_n\}$ in D_f with $x_n \to a$, $f(x_n) \to f(a)$.

(b) Define removable discontinuity, jump discontinuity and 2^{nd} type of discontinuity. (r-1)|r-2|

For
$$f(x) = \frac{(x-1)|x-2|}{x^2 - 3x + 2}$$
, discuss the types of discontinuity of f.

OR

Determine whether the following functions are uniformly continuous or not?

(i)
$$f(x) = \frac{1}{x}$$
 on (0, 1).
(ii) $f(x) = \frac{1}{x}$ on (a, b), $a > 0$

4. (a) State and prove Mean Value Theorem. Verify it for
$$f(x) = \log x$$
 in [1, e].

OR

Suppose that f is defined on the open interval I and has a local maximum or local minimum at $c \in I$. Then if f is differential at c, prove that f'(c) must equal zero. Discuss its application on $f(x) = \sin x$.

(b) Evaluate :

(i)
$$\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{\tan x - x}$$

(ii)
$$\lim_{x \to 0} \left(\frac{1}{x}\right)^{(1 - \cos x)}$$

OR

State and prove L' Hospital's first rule.

- 5. Attempt any SEVEN of the following in short :
 - (1) Give an example (if exists) of a set, which is superset of Q but countable.
 - (2) Give an example of a set whose lub does not exist but glb exists and belongs to the set.
 - (3) Find limit superior and limit inferior of the sequence $a_n = \sin \frac{n\pi}{4}$.
 - (4) Find cluster points of sequence $b_n = -n + (-1)^n$.
 - (5) Give an example of a function which is continuous but not uniformly continuous.
 - (6) Let $A = \{x \in \mathbb{R} : x \neq 1\}$ and $B = \{y \in \mathbb{R} : y \neq 2\}$; define $f : A \to B$, $f(x) = \frac{2x}{x-1}$ for all $x \in A$. Show that f is injective.
 - (7) Apply Rolle's theorem (if applicable) to $f(x) = \sin x$ on $[0, \pi]$ and find c as prescribed by the theorem.
 - (8) Evaluate $\lim_{x \to 0} \frac{2 \sin x \sin 2x}{x^3}$
 - (9) State Cauchy's Mean Value Theorem.

MC-115

7

7

7

7

14