Seat No.	:	
----------	---	--

ND-119

November-2022

B.Sc., Sem.-V

303 : Mathematics (Complex Variables and Fourier Series)

Time: 2½ Hours]

[Max. Marks: 70

Instructions:

- (1) All questions are compulsory.
- (2) Write the question number in your answer sheet as shown in the question paper.
- (3) Figures to the right indicate marks of the question / sub-question.
- 1. (i) Prove that (i) $\sin ix = i \sinh x$ (ii) $\cos ix = \cosh x$ and hence separate $\tanh (x + iy)$ into its real and imaginary parts.
 - (ii) Prove that for any rational number n, $(\cos \theta + i\sin \theta)^n = \cos n\theta + 1 i\sin n\theta$.

OR

- (i) If a, a^2 , a^3 , a^4 are the roots of $x^5 = 1$, then find them and show that $(1 a)(1 a^2)(1 a^3)(1 a^4) = 5$.
- (ii) Define convergence of the series of complex numbers. Suppose that $z_n = x_n + iy_n$, $n \in \mathbb{N}$ and S = X + iY, then prove that $\sum_{n=1}^{\infty} z_n = S$ if and only if $\sum_{n=1}^{\infty} x_n = X$ and $\sum_{n=1}^{\infty} y_n = Y$.
- 2. (i) State and prove necessary conditions for a function f(x, y) = u(x, y) + iv(x, y) to be analytic at a point in a region R.
 - (ii) Show that $f(z) = \cos z$ is an entire function and also find its derivative.

OR

(i) If $f(z) = \begin{cases} \frac{(\overline{z})^2}{z}; z \neq 0 \\ 0; z = 0 \end{cases}$ then, check whether component functions satisfy C-R

equations at origin. Also check if f(z) is analytic at origin.

(ii) Derive Cauchy - Riemann equations in polar form. Hence prove that $r^2u_{rr}(r, \theta) + ru_r(r, \theta) + u_{\theta\theta}(r, \theta) = 0$.

- 3. (i) If f(z) is analytic at a point z_0 of the domain then prove that mapping w = f(z) is conformal at z_0 iff $f'(z_0) \neq 0$.
 - (ii) Show that the transformation $w = \frac{1}{z}$, $z \ne 0$ transforms lines and circles to lines and circles.

OR

(i) Show that the transformation $w = \frac{2z+3}{z-4}$, $z \ne 4$ transforms the circle $x^2 + y^2 - 4x = 0$

into the straight line 4u + 3 = 0 and explain why the curve obtained is not a circle. 7

- (ii) Consider the map w = 2(1 + i)z. Find image R' in w plane of the rectangular region R bounded by the lines x = 0, y = 0, x = 1 and y = 2 in z plane. Sketch both R and R'.
- 4. (i) State and prove Bessel's inequality.
 - (ii) Find Fourier series expansion of $f(x) = x^3, -\pi < x < \pi$.

OR

- (i) State and prove Riemann-Lebesgue theorem.
- (ii) Find Fourier series expansion of $f(x) = \begin{cases} 1+x, & 0 < x < \pi \\ 1-x, & \pi < x < 2\pi \end{cases}$
- 5. Give the answer in brief: (Any Seven)
 - (1) Plot all the roots of $z^3 = 1$.
 - (2) State triangle inequality.
 - (3) Evaluate ln (2i).
 - (4) Define an Analytic function.
 - (5) Define harmonic function.
 - (6) Can there be a function which is differentiable but not analytic? If so give one example (without justification).
 - (7) Define Conformal transformation.
 - (8) Define Bilinear transformation.
 - (9) Find fixed points of $w = \frac{z+1}{3z-4}, z \neq \frac{4}{3}$.
 - (10) Define Periodic function.
 - (11) Find Fourier coefficient a_0 for the function f(x) = |x| in (-2, 2).
 - (12) Find Fourier series expansion for the function $f(x) = \cos x$ in $(0, 2\pi)$.