\qquad

MD-108

March-2018
B.Sc., Sem.-V

CC-303 : Mathematics
(Complex Variables and Fourier Series)

Time : 3 Hours]
[Max. Marks : 70

Instructions : (i) All the questions are compulsory.
(ii) Each question is of $\mathbf{1 4}$ marks

1. (a) Define trigonometric and hyperbolic functions in C. Show that $|\sin z|^{2}+|\cos z|^{2}$ $=\operatorname{ch} 2 \mathrm{y} ; \mathrm{z} \in \mathrm{C}$. Also, express $\sqrt{3}-\mathrm{i}$ in the exponential form.

OR
State and prove De Moivre's theorem and hence solve the equation $\mathrm{z}^{5}-\mathrm{l}=0 ; \mathrm{z} \in \mathrm{C}$.
(b) Define the convergence of the sequence and series of complex numbers. If $z_{n}=a_{n}+i b_{n} ; n=1,2,3, \ldots$ and $S=A+i B$, then prove that $\sum_{n=1}^{\infty} z_{n}=S$ if and only if $\sum_{n=1}^{\infty} a_{n}=A$ and $\sum_{n=1}^{\infty} b_{n}=B$.

OR

In the system C of complex numbers prove :
(i) $\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\overline{z_{1}}}{\overline{z_{2}}}, z_{2} \neq 0$
(ii) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$

Also solve the equation $z^{2}+z+1=0$
2. (a) Define limit of a complex function, harmonic function and analytic function . If a complex function $\mathrm{f}(\mathrm{z})=\mathrm{u}(x, y)+\mathrm{iv}(\mathrm{x}, \mathrm{y})$ is analytic in the domain D , then derive Cauchy-Riemann equations $\mathrm{u}_{x}=\mathrm{v}_{\mathrm{y}}$ and $\mathrm{u}_{\mathrm{y}}=-\mathrm{v}_{x}$ stating necessary conditions and verify the same for the function $\mathrm{f}(\mathrm{z})=\sin \mathrm{h} \mathrm{z}$ where, $\mathrm{z}=x+$ iy $\in \mathrm{C}$.

OR
Define Entire function. Obtain the harmonic conjugate of $\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ and find the corresponding analytic function in terms of z . Would it be entire? Justify.
(b) If the function $\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{r}, \theta)+\mathrm{iv}(\mathrm{r}, \theta)$ is analytic in the whole complex plane except at the origin, then derive $r^{2} v_{r r}+r v_{r}+v_{\theta \theta}=0$. Verify the derived result for the function $\frac{1}{\mathrm{Z}}$.

OR

Show that the function $\mathrm{f}(\mathrm{z})=\frac{x^{3}(1+\mathrm{i})-\mathrm{y}^{3}(1-\mathrm{i})}{x^{2}+\mathrm{y}^{2}} ;(x, \mathrm{y}) \neq(0,0)$

$$
=0 \quad ;(x, y)=(0,0)
$$

is not analytic at $\mathrm{z}=0$ even if $\mathrm{f}(\mathrm{z})$ satisfies Cauchy-Riemann equations at the origin.
3. (a) Define Conformal mapping. Prove that an analytic function $f(z)$ is conformal at z_{0} if and only if $\mathrm{f}^{f}\left(\mathrm{z}_{0}\right) \neq 0$.

OR

Define linear fractional transformation. Obtain the image of the curve $|z-3|<2$ under the Mobius transformation $w=\frac{i z+1}{z+i}$.
(b) Find the image of the strip $1 \leq x \leq 2$, y is real, under the mapping $\mathrm{w}=\frac{1}{\mathrm{z}}, \mathrm{z} \neq 0$.

OR

Find the critical (non-conformal) points and the angle of rotation of the mapping $\mathrm{w}=\mathrm{z}^{3}-3 \mathrm{z}^{2}-6 \mathrm{z}-11$ at the point $2+\mathrm{i}$. Also, obtain the bilinear transformation that maps $1,0,-1$ onto $-1,1,0$.
4. (a) If $f(x)$ is Riemann integrable in $(-\pi, \pi)$, then prove that the series $\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}{ }^{2}\right)$ converges, where a_{n} and b_{n} are the Fourier co-efficients of $\mathrm{f}(x)$.

OR

Define the Fourier series for the function f and obtain the Fourier series expansion for the function $\mathrm{f}(x)=x \sin x,-\pi<x<\pi$.
(b) Find the Fourier series for the function defined as $\mathrm{f}(x)=x$ in $(0, \pi)$ and $\mathrm{f}(x)=2 \pi-x$ in $(\pi, 2 \pi)$.

OR

Find the Fourier series expansion of the function $\mathrm{f}(x)=x+x^{2}$ in $[-\pi, \pi]$.
5. Attempt any Seven in Short :
(i) Identify the curve : $|\mathrm{z}-\mathrm{i}|=1$.
(ii) Write the derivative of the functions $\sinh \mathrm{z}, \log \mathrm{z}$ with respect to $\mathrm{z}=x+\mathrm{iy} \in \mathrm{C}$.
(iii) Find the angle of rotation of the $f(z)=1 / z$ at the point $2-i$.
(iv) Is the function $\mathrm{f}(\mathrm{z})=\sin (\overline{\mathrm{z}})$ analytic in the domain D ? Justify.
(v) 'If $\mathrm{u}(x, \mathrm{y})$ and $\mathrm{v}(x, y)$ are harmonic conjugate of each other then both are constant', justify.
(vi) Find the singular points of $z^{2}+2 z-1 /(z-1)\left(z^{2}-7 z+12\right)$.
(vii) Obtain $\int^{\pi} \sin \mathrm{m} x \cos \mathrm{n} x \mathrm{~d} x$ for all $\mathrm{m}, \mathrm{n}=0,1,2, \ldots$

$$
-\pi
$$

(viii) State Bessel's inequality.
(ix) Find the image of the line $\mathrm{y}=x-1$ under the linear transformation $\mathrm{w}=\mathrm{z}+2$.

