Seat No. : _____

MD-108

March-2018

B.Sc., Sem.-V

CC-303 : Mathematics (Complex Variables and Fourier Series)

Time : 3 Hours]

(b)

[Max. Marks : 70

7

Instructions :	(i)	All the questions are compulsory.
	(ii)	Each question is of 14 marks

1. (a) Define trigonometric and hyperbolic functions in C. Show that $|\sin z|^2 + |\cos z|^2$ = ch2y; $z \in C$. Also, express $\sqrt{3} - i$ in the exponential form. 7

OR

State and prove De Moivre's theorem and hence solve the equation $z^5 - l = 0$; $z \in C$. Define the convergence of the sequence and series of complex numbers.

If
$$z_n = a_n + ib_n$$
; $n = 1, 2, 3,...$ and $S = A + iB$, then prove that $\sum_{n=1}^{\infty} z_n = S$ if and $\sum_{n=1}^{\infty} \frac{\infty}{2}$

only if $\sum_{n=1}^{\infty} a_n = A$ and $\sum_{n=1}^{\infty} b_n = B$.

OR

In the system C of complex numbers prove :

(i) $\left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}, z_2 \neq 0$

(ii)
$$|z_1 z_2| = |z_1| |z_2|$$

Also solve the equation $z^2 + z + 1 = 0$

2. (a) Define limit of a complex function, harmonic function and analytic function. If a complex function f(z) = u(x, y) + iv(x, y) is analytic in the domain D, then derive Cauchy-Riemann equations $u_x = v_y$ and $u_y = -v_x$ stating necessary conditions and verify the same for the function $f(z) = \sinh z$ where, $z = x + iy \in C$. **OR**

Define Entire function. Obtain the harmonic conjugate of $\frac{1}{2} \log (x^2 + y^2)$ and find the corresponding analytic function in terms of z. Would it be entire ? Justify.

MD-108

P.T.O.

(b) If the function $f(z) = u(r, \theta) + iv(r, \theta)$ is analytic in the whole complex plane except at the origin, then derive $r^2v_{rr} + rv_r + v_{\theta\theta} = 0$. Verify the derived result for the function $\frac{1}{z}$.

OR

Show that the function $f(z) = \frac{x^3 (1 + i) - y^3 (1 - i)}{x^2 + y^2}$; $(x, y) \neq (0, 0)$ = 0; (x, y) = (0, 0)

is not analytic at z = 0 even if f(z) satisfies Cauchy-Riemann equations at the origin.

3. (a) Define Conformal mapping. Prove that an analytic function f(z) is conformal at z_0 if and only if $f'(z_0) \neq 0$.

OR

Define linear fractional transformation. Obtain the image of the curve |z - 3| < 2under the Mobius transformation $w = \frac{iz + 1}{z + i}$.

(b) Find the image of the strip
$$1 \le x \le 2$$
, y is real, under the mapping $w = \frac{1}{z}, z \ne 0$. 7

OR

Find the critical (non-conformal) points and the angle of rotation of the mapping $w = z^3 - 3z^2 - 6z - 11$ at the point 2 + i. Also, obtain the bilinear transformation that maps 1, 0, -1 onto -1, 1, 0.

4. (a) If f(x) is Riemann integrable in $(-\pi, \pi)$, then prove that the series $\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$ converges, where a_n and b_n are the Fourier co-efficients of f(x).

OR

Define the Fourier series for the function f and obtain the Fourier series expansion for the function $f(x) = x \sin x$, $-\pi < x < \pi$.

(b) Find the Fourier series for the function defined as f(x) = x in $(0, \pi)$ and $f(x) = 2\pi - x$ in $(\pi, 2\pi)$.

OR

Find the Fourier series expansion of the function $f(x) = x + x^2$ in $[-\pi, \pi]$.

MD-108

7

7

7

7

- 5. Attempt any Seven in Short :
 - (i) Identify the curve : |z i| = 1.
 - (ii) Write the derivative of the functions $\sinh z$, $\log z$ with respect to $z = x + iy \in C$.
 - (iii) Find the angle of rotation of the f(z) = 1/z at the point 2 i.
 - (iv) Is the function $f(z) = \sin(\overline{z})$ analytic in the domain D? Justify.
 - (v) 'If u(x, y) and v(x, y) are harmonic conjugate of each other then both are constant', justify.
 - (vi) Find the singular points of $z^2 + 2z 1/(z-1)(z^2 7z + 12)$.

(vii) Obtain
$$\int_{-\pi}^{\pi} \sin mx \cos nx \, dx$$
 for all m, n = 0, 1, 2, ...

- (viii) State Bessel's inequality.
- (ix) Find the image of the line y = x 1 under the linear transformation w = z + 2.

MD-108