\qquad

MF-107

March-2018

B.Sc., Sem.-V

SE-305 : Mathematics

(Number Theory)
Time : 3 Hours]
[Max. Marks : 70

1. (a) State and prove the Division Algorithm theorem for integers.

OR

Prove that for given integers a and b, not both of which are zero, there exist integers x and y such that $g c d(a, b)=a x+b y$.
(b) (i) Prove that for positive integers a and $b, \operatorname{gcd}(a, b) \operatorname{lcm}(a, b)=a b$.
(ii) Use the Euclidean Algorithm to obtain integers x and y satisfying $\operatorname{gcd}(1769,2378)=1769 x+2378 y$.

OR
Prove that the linear Diophantine equation $a x+b y=c$ has a solution if and only if d / c, where $\mathrm{d}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$. Further prove that if x_{0}, y_{0} is any particular solution of this equation, then all other solutions are given by
$x=x_{0}+\left(\frac{\mathrm{b}}{\mathrm{d}}\right) \mathrm{t}, \mathrm{y}=\mathrm{y}_{0}-\left(\frac{\mathrm{a}}{\mathrm{d}}\right) \mathrm{t}$, where t is an arbitrary integer.
2. (a) Prove that there is an infinite number of primes.

OR

(i) Define prime numbers. For any integers n, a and b, does $n / a b$ implies n / a or n / b ? If not when this will hold true ?
(ii) Employing the Sieve of Eratosthenes, obtain all the primes between 100 and 200.
(b) Let $\mathrm{n}>1$ be fixed and a, b, c, d be arbitrary integers. Then prove that the following properties hold :
(i) If a $\equiv \mathrm{b}(\bmod \mathrm{n})$ and $\mathrm{c} \equiv \mathrm{d}(\bmod \mathrm{n})$, then
$a+c=b+d(\bmod n)$ and $a c=b d(\bmod n)$.
(ii) If $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$, then $\mathrm{a}+\mathrm{c} \equiv \mathrm{b}+\mathrm{c}(\bmod \mathrm{n})$ and $\mathrm{ac} \equiv \mathrm{bc}(\bmod \mathrm{n})$.
(iii) If $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$, then $\mathrm{ak} \equiv \mathrm{bk}(\bmod \mathrm{n})$ for any positive integer k .

OR
(i) Solve : $25 x \equiv 15(\bmod 29)$.
(ii) Solve following set of simultaneous congruences:

$$
x \equiv 2(\bmod 3), x \equiv 3(\bmod 5), x \equiv 2(\bmod 7)
$$

3. (a) State and prove Fermat's Theorem. Is the converse of Fermat's theorem true ? Justify.

OR

Show that the quadratic congruence $x^{2}+1 \equiv 0(\bmod \mathrm{p})$, where p is an odd prime, has a solution if and only if $p \equiv 1(\bmod 4)$.
(b) State and prove Wilson's theorem. Is the converse of Wilson's theorem true ? Justify.

OR

Show that Euler's Phi-function is a multiplicative function.
4. Answer the following in short : (Attempt any eight)
(i) Explain the Euclidean algorithm.
(ii) State the Fundamental Theorem of Arithmetic.
(iii) State Euler's theorem.
(iv) State the Binomial Theorem.
(v) Explain canonical form of a number giving suitable example.
(vi) Find $\phi(450)$.
(vii) What is the remainder when 24^{3} is divided by 13 ?
(viii) Find all prime numbers that divide 50 !.
(ix) Write any two properties of Euler phi function.
(x) Prove or Disprove: If a / b and c / d, then $\mathrm{ac} / \mathrm{bd}$.

