Cant No.	
Seat No.:	
ne .	
cs	۵
[Max. Marks: 7	10
mode gain and	
de gain, common mode gain and amplifier with the help of its low	
amplifier with the help of its	7
tial amplifier circuit, $R_C = 2 k\Omega$,	
0 and $V_{BE} = 0.7 \text{ V}$.	
$V_2 = 0$, and	
	7
	7
out resistance of an OP-AMP.	7
n differential amplifier circuit.	,
	4
plifier?	
•	
given ?	

P.T.O.

NE-121

November-2018

B.Sc., Sem.-V

CC-301: Electronics

Time: 2:30 Hours

Instructions:

(1) All questions carry equal marks.

- (2) Symbols have their usual meaning.
- 1. (a) Answer the following:
 - (i) Derive the equations of differential mode gain, common mode gain and CMRR for emitter coupled differential amplifier with the help of its low frequency small signal equivalent circuit.
 - (ii) For the basic emitter coupled differential amplifier circuit, $R_C = 2 \text{ k}\Omega$ $R_E = 4.3 \text{ k}\Omega$, $V_{CC} = V_{EE} = 5 \text{ V}$, $\beta_o = 200 \text{ and } V_{BE} = 0.7 \text{ V}$.

Determine:

- (I) l_{BQ} , l_{CQ} , V_{01} , V_{02} , V_{CEQ} for $V_1 = V_2 = 0$, and
- (II) ADM, ACM and CMRR

OR

- (i) Explain the method of increasing the input resistance of an OP-AMP.
- (ii) Explain the importance of Active load in differential amplifier circuit.
- (b) Answer in short for four questions out of six :
 - (1) How is emitter biased in differential amplifier?
 - (2) Define common mode signal.
 - (3) How can one improve CMRR?
 - (4) Why the name current mirror circuit is given?
 - (5) What is a V_{BE} multiplier?
 - (6) What is the main function of the output stage in an OP-AMP?

2.	(a)	Ans	wer the following:						
		(i)	Draw the circuit diagram to perform addition and subtraction						
			simultaneously with a single OP-AMP and obtain the formula for output.						
		(ii)	Explain the function of voltage to current converter circuit if the load is						
			(i) floating and						
			(ii) grounded	Y					
			OR						
		(i)	Discuss the following applications of an OP-AMP with neat circuit						
			diagram.						
			(l) AC voltage follower						
			(II) Peak detector	7					
		(ii)	Discuss the operation of full wave precision rectifier circuit using OP-AMP						
			with necessary waveforms.	7					
	(b)	Ansv	wer in short for four questions out of six :	4					
		(1)	Give application of current to voltage converter.						
		(2)	What is a precision diode?						
		(3)	Show, with the help of circuit diagram an OP-AMP as phase shifter.						
		(4)	List the important features of an instrumentation amplifier.						
		(5)	If an AC amplifier using OP-AMP, if $R = 1 \text{ k}\Omega$, and $C = 0.1 \mu\text{F}$, then						
			calculate lower cut-off frequency of an amplifier.						
1		(6)	In current to voltage converter, how can high frequency noise he reduced?						

3.	(a)	Answer	the	following	
	(4)	MISWEI	uic	TOHOWING	

- (i) Explain the operation of high current fixed voltage regulator with short circuit protection.
- (ii) Discuss three terminal adjustable voltage regulator and obtain expression for stabilization factor and output resistance.

OR

- (i) Explain fold back current limiting circuit of positive voltage regulator.
- (ii) Discuss four terminal adjustable regulator.
- (b) Answer, in short for three questions out of five:
 - (1) State the output advantages of IC voltage regulator.
 - (2) Define load regulation.
 - (3) What do you mean by tracking regulator?
 - (4) What is band gap reference level?
 - (5) What are the limitations of three terminal voltage regulator?

4. (a) Answer the following:

- (i) Draw and explain different schemes of switching regulators and their advantages.
- (ii) Explain input and output power for switching regulator and prove that

$$I_1 = \left(\frac{t_{on}}{T}\right) I_0$$

OR

- (i) Explain operation of switching regulator using LM 105.
- (ii) State important characteristics and explain the operation of free running switching regulator with the help of circuit diagram.

- (b) Answer in short for three questions out of five questions:
 - (1) How is output voltage controlled in switching regulator?
 - (2) Write the two limitations switching regulators.
 - (3) What is the function of pass-transistor in switching regulator?

3

- (4) Why is free wheel diode used in switching regulators?
- (5) What is ESR?

