NC-108

November-2021

B.Sc., Sem.-V

CC-302 : Mathematics (Analysis – I)

Time: 2 Hours] [Max. Marks: 50 Instructions: There are total 9 questions. (1) (2)Attempt any 3 questions from first 8 question. (3) Questions number 9 is compulsory. (4) Notations and terminologies are standard. Let A be any set. Prove that there is no surjection of A onto the set P(A) of all 1. (a) subsets of A. Prove that there exists $x \in \mathbb{R}$ such that $x^2 = 2$. 7 (b) 2. (a) State and prove rational density theorem. (b) Define lub of a set. Let A be a non-empty bounded subset of R. Define $\alpha A = \{aa : a \in A\}$, where $\alpha > 0$. Prove that lub $(\alpha A) = \alpha \cdot \text{lub } A$. 3. Let $\{x_n\}$ and $\{y_n\}$ be two convergent sequences such that $\lim_{n\to\infty} x_n = l$ and $\lim_{n\to\infty} y_n = m$. Prove that $\lim_{n\to\infty} x_n \cdot y_n = l \cdot m$. Prove that the sequence $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$ is convergent. 4. Prove that every Cauchy sequence of real numbers is convergent. Define Cauchy sequence. Prove that the sequence $\left\{\sum_{k=1}^{n} \frac{1}{k^3}\right\}$ is a Cauchy (b)

NC-108

sequence.

P.T.O.

- 5. (a) Let $f: E \subset R \to R$ be a function and $c \in R$. Prove that f is continuous at c iff for every sequence $\{x_n\}$ in E with $x_n \neq c$, $\forall n \in N$, $x_n \to c$, as $n \to \infty$, then $f(x_n) \to f(c)$, as $n \to \infty$.
 - (b) Prove that the function $f(x) = \frac{1}{x}$ is not uniformly continuous on $(0, \infty)$ and uniformly continuous on $[c, \infty)$, c > 0.
- (a) Let f: [a, b] → R be a continuous function. Prove that f is uniformly continuous on [a, b].
 - (b) Define $f:(0, 1) \to R$ by $f(x) = \sin\left(\frac{2\pi}{x}\right)$, $x \in (0, 1)$. Discuss the uniform continuity of f on (0,1).
- 7. (a) State and prove Inverse function theorem for derivative.
 - (b) Prove that the equation $x^3 3x^2 + b = 0$ has at most one root in the interval [0,1]. 7
- 8. (a) State and prove Darboux's Mean Value Theorem.
 - (b) Show that $\cos x = x^3 + x^2 + 4x$ has exactly one root in $\left[0, \frac{\pi}{2}\right]$.
- 9. Attempt any four: (in short)
 - (1) By definition prove that $lub \left\{ 1 \frac{1}{n+3} : n \in \mathbb{N} \right\} = 1$.
 - (2) Define: Ordered field.
 - (3) Give an example of a sequence which is bounded but not convergent.
 - (4) State Extreme Value Theorem.
 - (5) By definition prove that $\lim_{n\to\infty} \frac{1}{n+1} = 0$.
 - (6) Define: Removable discontinuity.