ND-139

November-2021

B.Sc., Sem.-V

303 : Mathematics (Complex Variables & Fourier Series)

Time: 2 H	Iours]	[Max. Marks: 50
Instruction	ns: (1) All Questions in SECTION - I carry equal marks.	
	(2) Attempt any THREE questions in SECTION - I.	
	(3) Question - 9 in SECTION - II is COMPULSORY	
1	SECTION - I	
). (A)	State and prove De-Moivre's theorem.	7
(B)	Find the cube root of -27i	7
2. (A)	Find all values of $(-1 + i)^{2/5}$.	7
(B)	Find the radius of convergence of the series	
	(i) $\sum \frac{z^n}{n^n}$ (ii) $\sum \frac{n!z^n}{n^n}$	
	— n	
3. (A)	State and prove sufficient condition for Cauchy-Riemann condi-	tion in Cartesian
J. (A)	coordinates.	7
(B)	If $u = x^3 - 3x^2y$ then prove that u is a Harmonic function and fi	nd the harmonic
. ,	conjugate of u, also find analytic function f(z).	7
4. (A)	Show that $u(x, y) = e^{-x} \cos y$ is harmonic function then find	nd its harmonic
	conjugate and function $f(x, y) = u + iv$. Define limit of a complex function $f(z)$. Prove that if the limit	t exits then it is:
(B)		7
	unique.	
	π	
5. (A)	For $w = Ze^{i\frac{\pi}{4}}\sqrt{2}$, determine the region R of w – plane correction V	esponding to the
	Rectangular region bounded by the	
	x = 0, $y = 0$, $x = 2$, $y = 3$ in Z plane. State and Prove the necessary and the sufficient condition for the	ne transformation
(B)	State and Prove the necessary	-
ND-139	to be Conformal.	P.T.O.

- (A) Under the transformation w = 1/z find the image of |z-2i| = 2. Sketch the region in both the plane.
 (B) Find the image of the curve | Z + i | = 2 under the mapping W = Z + i / Z i.
- 7. (A) If the series ¹/₂ a₀ + [∞]/_{n=1} (a_n cos nx + b_n sin nx) converges uniformly to f on [-π, π].
 Then prove that it is a Fourier Series for f on [-π, π].
 (B') Find the Fourier Series to represent e^{ax} in the interval [-π, π].
- (A) If f(x) is Reimann Integrable in (-π, π) then the series ∑_{n=1}[∞] (a_n² + b_n²) converges Where an, bn are the Fourier Coefficients of f(x).
 (B) Find the Fourier Series to represent f(x) = x + x² in the interval [-π, π].

SECTION-II

- 9. Attempt any FOUR:
 (i) Express -√3 + i in the polar form.
 - (ii) Find the value of $(1-i)^{14}$.
 - (iii) Is $w = e^z$ entire? Justify.
 - (iv) Examine the continuity of the function $\frac{Z}{Z-1}$
 - (v) Find the point at which the mapping $W = Z^2 + \frac{1}{Z^2}$ is not conformal.
 - (vi) Find $\int_{0}^{\pi} \sin mx \cos nx dx$.