ND-139 ## November-2021 ## B.Sc., Sem.-V #### 303 : Mathematics (Complex Variables & Fourier Series) | Time: 2 H | Iours] | [Max. Marks: 50 | |-------------|--|---------------------| | Instruction | ns: (1) All Questions in SECTION - I carry equal marks. | | | | (2) Attempt any THREE questions in SECTION - I. | | | | (3) Question - 9 in SECTION - II is COMPULSORY | | | | | | | 1 | SECTION - I | | |). (A) | State and prove De-Moivre's theorem. | 7 | | (B) | Find the cube root of -27i | 7 | | | | | | 2. (A) | Find all values of $(-1 + i)^{2/5}$. | 7 | | (B) | Find the radius of convergence of the series | | | | (i) $\sum \frac{z^n}{n^n}$ (ii) $\sum \frac{n!z^n}{n^n}$ | | | | — n | | | 3. (A) | State and prove sufficient condition for Cauchy-Riemann condi- | tion in Cartesian | | J. (A) | coordinates. | 7 | | (B) | If $u = x^3 - 3x^2y$ then prove that u is a Harmonic function and fi | nd the harmonic | | . , | conjugate of u, also find analytic function f(z). | 7 | | | | | | 4. (A) | Show that $u(x, y) = e^{-x} \cos y$ is harmonic function then find | nd its harmonic | | | conjugate and function $f(x, y) = u + iv$.
Define limit of a complex function $f(z)$. Prove that if the limit | t exits then it is: | | (B) | | 7 | | | unique. | | | | π | | | 5. (A) | For $w = Ze^{i\frac{\pi}{4}}\sqrt{2}$, determine the region R of w – plane correction V | esponding to the | | | Rectangular region bounded by the | | | | x = 0, $y = 0$, $x = 2$, $y = 3$ in Z plane.
State and Prove the necessary and the sufficient condition for the | ne transformation | | (B) | State and Prove the necessary | - | | ND-139 | to be Conformal. | P.T.O. | - (A) Under the transformation w = 1/z find the image of |z-2i| = 2. Sketch the region in both the plane. (B) Find the image of the curve | Z + i | = 2 under the mapping W = Z + i / Z i. - 7. (A) If the series ¹/₂ a₀ + [∞]/_{n=1} (a_n cos nx + b_n sin nx) converges uniformly to f on [-π, π]. Then prove that it is a Fourier Series for f on [-π, π]. (B') Find the Fourier Series to represent e^{ax} in the interval [-π, π]. - (A) If f(x) is Reimann Integrable in (-π, π) then the series ∑_{n=1}[∞] (a_n² + b_n²) converges Where an, bn are the Fourier Coefficients of f(x). (B) Find the Fourier Series to represent f(x) = x + x² in the interval [-π, π]. #### SECTION-II - 9. Attempt any FOUR: (i) Express -√3 + i in the polar form. - (ii) Find the value of $(1-i)^{14}$. - (iii) Is $w = e^z$ entire? Justify. - (iv) Examine the continuity of the function $\frac{Z}{Z-1}$ - (v) Find the point at which the mapping $W = Z^2 + \frac{1}{Z^2}$ is not conformal. - (vi) Find $\int_{0}^{\pi} \sin mx \cos nx dx$.