NF-123

November-2021

B.Sc., Sem.-V

EC-305: Mathematics

(Discrete Mathematics)

Time	: 2 H	ours]		[Max. Marks	: 50
Instructions:			ns: (1) Attempt any three questions from Q-1 to Q-6.		
			(2)	Q-7 is compulsory.	
			(3)	Notations are usual, everywhere.	
			(4)	Figures to the right indicate marks of the question/Sub-question.	
1.	(A)	Stat	e and	prove Modular Inequality.	7
	(B)	Exp	lain H	lass Diagram and also draw the Hass Diagram of (S ₁₀₅ , D).	7
2.	(A)	100 100 100 100		I, and relation D is defined on N as, "xDy means x divides y" $\forall x, y \in \mathbb{N}$ w that $\langle \mathbb{N}, D \rangle$ is Partially Ordered Set (POSET) but not a chain.	N. 7
	(B)	Pro	ve (1)	$a * (a \oplus b) = a$ (2) $a \oplus (b * c) \le (a \oplus b) * (a \oplus c)$.	7
3.	(A)	Stat	e De'	Morgan's laws and prove any one of them.	7
	(B)	Def	ine di	rect product of lattice and draw the Hass diagram of $(S_9 \times S_4, D)$ s	7
4.	(A)	Pro	ve tha	t every chain is Distributive Lattice.	7
	(B)	A	And the second	inplemented distributive lattice $\langle L, *, \oplus, 0, 1 \rangle$ s and for every a, b $*b' = 0 \Leftrightarrow b' \le a' \Leftrightarrow a' \oplus b' = 1$.	≡ L, 7
5.	(A)		01/20/20 00/20/20 00/20/20	\oplus , ', 0, 1) be a Boolean algebra. Then a non-empty element a of B if and only if either a * $x = 0$ or a $\oplus x = a$; $\forall x \in B$.	is an 7
	(B)	Exp	ress x	$1 \oplus x_2$ as sum of product (SOP) canonical form in three variables.	7
NF-	123			1	P.T.O.

- Let $(B, *, \oplus, ', 0, 1)$ be a Boolean algebra with n variables $x_1, x_2, ..., x_n$ then 6.
 - There are 2^n minterms in the n variables namely minj; $j = 0, 1, 2, ... 2^n 1$. (1)
 - $m_i * m_j = 0$; $\forall i \neq j \& i, j = 0, 1, 2, ... <math>2^n 1$. (2) 2n - 1
 - $\bigoplus_{i=0}^{m_i=1}.$ (3)
 - In any Boolean algebra show that $a = 0 \Leftrightarrow ab' + a'b = b$. (B)
- 7. Attempt any four of the following in short:
 - For a Lattice (L, \leq), prove that $a \leq b \Leftrightarrow a * b = a$. (1)
 - Give a relation on the set which is Irreflexive and Transitive but not Symmetric. (2)
 - Find complement of each element in the set of divisors of 18. (3)
 - Define: Lattice homomorphism. (4)
 - State: Stone representation theorem. (5)
 - Define: Equivalent Boolean Expression. (6)

NF-123

November-2021

B.Sc., Sem.-V

EC-305: Mathematics

(Number Theory)

inie .	2 110		[Max. Marks: 50
Instru	ıction	 (1) All Questions in Section – I carry equal marks. (2) Attempt any three questions in Section – I. (3) Question – 7 in Section – II is Compulsory. 	
		Section - I	
1.	(A)	State and prove Division algorithm theorem.	7
	(B)	Find the all positive solutions in the integers for the Diopha	ntine equation
		24x + 138y = 18.	7
•			
2	A	Prove that the linear Diophantine equation ax + by = c has a so	lution iff d c,
		where u = g.c.u.(a, b). Also prove that if x ₀ , y ₀ is a solution of thi	s equation then
		all other solutions are given by $x = x_0 + \left(\frac{b}{d}\right)t$; $y = y_0 - \left(\frac{a}{d}\right)t$	
		where t is any integer.	7
	(B)	Using the Euclidean algorithm to obtain the integer x and y such 3054) = $12378x + 3054y$.	that gcd(12378, 7
3.	(A)	Define "Congruence modulo relation for a fixed positive integer	n". Also prove
		that it is an equivalence relation.	7
	(B)	Using the Sieve of Eratosthenes find all primes $p \le 120$.	7
4.	(A)	Let n > 0 be fixed and a, b, c are integers then prove that i	$f a \equiv b \pmod{n}$
		$c \equiv d \pmod{n} \Rightarrow ac \equiv bd \pmod{n}$ and $a^k = b^k \pmod{n}$ for any position	ive integer k. 7
	(B)	Using Chinese remainder theorem, find integer x such that 2	$2x \equiv 1 \pmod{3}$
		$3x \equiv 1 \pmod{5}; 5x \equiv 1 \pmod{7}.$	
	50		
5.	(A)	State and prove Wilson's theorem.	• • • • • • • • • • • • • • • • • • •
	(B)	Solve the linear congruence $25x \equiv 15 \pmod{29}$.	
NF-	123	3	P.T.C

6.	(A) Sta	ate and prove the Fermat's little theorem.	
	(B) (i)	Find the remainder when the sum $1! + 2! + 3! + + 100!$ is divisible by 12.	1
	Çiri	Find the remainder when 7 ²³⁴ + 4 ¹¹¹ is divisible by 5.	

Section - II

7. Attempt any FOUR:

- (1) If p is a prime number and p/ab then prove that p/a or p/b.
- (2) A number 360 can be written as product of prime in canonical form.
- (3) Prove that the number N = 1571724 is divisible by 9 and 11.
- (4) If $ax \equiv ay \pmod{n}$ and (a, n) = 1, then show that $x \equiv y \pmod{n}$.
- (5) Define Euler's Phi-function.
- (6) State (Only) Euler's theorem.

				B.Sc., SemV	
				EC-305 : Mathematics	
				(Financial Mathematics)	
Time: 2 Hours]			I	[Max. Marks : 5	0
Inst	tructio	ns:	(1)	Attempt any three questions from Q-1 to Q-6.	
			(2)	Q-7 is compulsory.	
			(3)	Notations are usual, everywhere.	
			(4)	Figures to the right indicate marks of the question/sub-question.	
1.	(a)	Writ	e a sh	ort Note on Time Value of Money.	7
	(b)	Wha	t is th	ne Future value of ₹ 21,000 invested for 10 years, for opportunity cost	
				ate) is 8% per year compounded annually, semi-annually, quarterly,	
		mon	thly, v	veekly, and continuously?	7
2.	(a)	Defin	ne sha	res, bonds, index and arbitrage also write no arbitrage principle.	7
	(b)	What	is th	e Future value of ₹ 40,000 invested for 7 years, for opportunity cost	
		(inter	est ra	te) is 5% per year compounded semi-annually, quarterly, monthly, and	
		daily	? Als	o find effective rate of interest in each case.	7
		A			
3.	(a)	Write	a sho	rt note on comparison of NPV and IRR.	7
	(b)	Consi	der tl	he cash flow with annual payments of 1000, -2000, -1000, 2000.	
	50	Suppo	ose th	ne relevant annual compound rates and finance rate is 10% and	
		reinve	stmer	nt rate 15%. Find MIRR.	

NF-123

November-2021

Seat No.:

- Consider a bond of n years with annual coupon payment C and face value F, if 4. (a) its yield (yield to maturity) is λ continuously compounded. Then derive the formula for Macaulay Duration.
 - A company wants to immunize its bond portfolio for a targeted period of 3 years (b) for this purpose company has decided to invest ₹ 1,00,000 at present and the details of two bonds are as follows.

	Bond A	Bond B
Face Value	1000	1000
Market Price	986.5	1035
Macaulay Duration	4 years	2 years

Determine the amount of money invested in each bond.

- Discuss Markowitz portfolio optimization problem with short selling and without 5. (a) short selling.
 - Calculate the portfolios mean return and variance using the following details, (b) $R = (0.2, 1.6, 0.9)^T$, W = (0.3, 0.4, 0.4) and

$$CV = \begin{bmatrix} 1.12 & 1.4 & 0.9 \\ 1.4 & 2.11 & 0.60 \\ 0.9 & 0.60 & 1.32 \end{bmatrix}$$
 find $\bar{\tau} \& \sigma^2$ for portfolio.

- Write a short note on portfolio diagram and choice of asset. 6. (a)
 - Consider a portfolio of three assets A, B & C with the following properties. **(b)**

$$\bar{r}_A = 0.12, \ \bar{r}_B = 0.41, \ \bar{r}_C = 0.16$$

$$\sigma_A = \sigma_B = \sigma_C = 1 \& \ \sigma_{AB} = \sigma_{BC} = \sigma_{AC} = 0$$

$$\sigma_A = \sigma_B = \sigma_c = 1 \& \sigma_{AB} = \sigma_{BC} = \sigma_{AC} = 0$$

For fixed $\bar{r} = 0.25$ find the minimum variance portfolio.

7. Attempt any four of the following in short:

8

- (a) Define inflation and write its formula.
- (b) Write future value of 100 after one year with annual interest rate 10%.
- (c) Define MIIR.
- (d) Write the Formula for Fisher Weill Duration for discrete compounding.

