GUJARAT UNIVERSITY

B.Sc. SEMESTER-V EXAMINATION: Dec-2021 MATHEMATICS PAPER-306 (PRACTICAL-I, BASED ON MAT-303)

Max. Marks 28 + 7

Date: 21-12-2021

SECTION-A

Time: 12.00 to 3.00

Note: 1. Attempt any TWO Questions.

- All questions carry equal marks.
- Viva and Journal carries 7 marks jointly.
- 4. Use separate answer-sheets to write answers of section-A and section-B.
- Q-1 (A) Find the 5th root of $-\sqrt{3}+i$.
 - (B) Determine where Cauchy-Riemann equations are satisfied for the function $f(z) = (x-y)^2 + 2i(x+y)$. Determine region of analyticity.
- Q-2 (A) show that the function $u(x,y) = 3x^2y + 2x^2 y^3 2y^2$ is harmonic. Find the harmonic conjugate function v and analytic function f(z).
 - (B) Determine an analytic function whose real port is $e^{2x}(x\cos 2y y\sin 2y)$.
- Q-3 (A) Find the image of the infinite strip $0 < y < \frac{1}{2}$ under the transformation $w = \frac{1}{z}$.
 - (B) Find the bilinear transformation that maps respectively the points i, 1, -i in Z plane onto the points -i, 1, i in W plane.
- Q-4 (A) Obtain the fourier series expansion of $f(x) = x \sin x$. Hence deduce that $\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1.3} = \frac{1}{3.5} + \frac{1}{5.7} = \dots$
 - (B) Obtain the fourier series in $[0,2\pi]$ for the function $f(x) = \begin{cases} x, x \in [0,\pi] \\ 2\pi x, x \in [\pi,2\pi] \end{cases}$

MATHEMATICS PAPER-306 (PRACTICAL-I, BASED ON MAT-304)

Date: 21-12-2021 SECTION-B Time: 12.00 to 3.00

Note: 1. Attempt any TWO Questions.

2 All questions carry equal marks.

Viva and Journal carries 7 marks jointly.

4. Use separate answer-sheets to write answers of section-A and section-B.

Q-1 (A) Solve the following LPP by graphical method.

Maximize $Z = 5X_1 + 7X_2$

Subject to the constrains: $X_1 + X_2 \le 4$; $3X_1 + 8 X_2 \le 24$; $10X_1 + 7X_2 \le 35$;

 $X_1, X_2 \ge 0$.

(B) Solve the following LPP by simplex method.

Maximize $Z = X_1 + X_2 + 3X_3$

Subject to the constrains: $3X_1 + 2X_2 + X_3 \le 3$; $2X_1 + X_2 + X_3 \le 2$; $X_1 \cdot X_2 \cdot X_3 \ge 0$.

Q-2 (A) Solve the following LPP by big-M method.

Maximize Z = 3 X₁ + 2 X₂

Subject to the constrains:

 $3X_1 + 4X_2 \le 2$; $3X_1 + 4X_2 \ge 12$; $X_1 \cdot X_2 \ge 0$.

(B) Solve the following LPP by 2-phase method.

Maximize $Z = X_1 + X_2$

Subject to the constrains:

 $2X_1 + X_2 \ge 4$; $X_1 + 7X_2 \ge 7$; $X_1, X_2 \ge 0$.

Q-3 (A) Using duality solve the following LPP.

Minimize $Z = 3 X_1 + 2 X_2$

Subject to the constrains:

 $2X_1 + X_2 \le 5$; $X_1 + X_2 \le 4$; $X_1 \cdot X_2 \ge 0$.

(B) Using "Hungarian method" to solve the following AP. Find the minimum cost solution of following 5 x 5 assignment problem:

В C D E 10 13 -15 16 18 13 6 10 2 D 9 12 10 12

Q-4 (A) Using MODI method to solve the following TP:

	D ₁	D ₂	D ₃
OL	19	D ₂	40
O ₂	. 30	30	8
Oı	50	40	70
O ₂ O ₃ O ₄	10	.60	20

1-2

(B) Using MODI method to solve the following TP:

	Dı	D ₂	Di	D ₄	
01	11	20	7	8	
02	21 .	16	10	12 .	
O3 .	8	12	8	9	