\qquad

MB-109

March-2018

B.Sc., Sem.-V

CC-301 : Physics

Time : 3 Hours]

[Max. Marks : 70
સૂચના : (1) દરેક પ્રશ્નના ગુણ સરખા છે.
(2) સકેતો પ્રચલિત અર્થમાં છે.

1. (a) હેલ્મ હોલ્ટ્ઝ સમીક૨ણને ગોલીય ધ્રુવીય યામ પદ્ધતિમાં વિભાજીત કરો.

વિસરણ સમીકરણ $\frac{\partial \rho(\overrightarrow{\mathrm{r}}, \mathrm{t})}{\partial \mathrm{t}}=\mathrm{D} \nabla^{2} \rho(\overrightarrow{\mathrm{r}}, \mathrm{t})$ ને નળાકારીય યામ પદ્ધતિમાં વિભાજીત કરો.
(b) સમય પ૨ આધારિત શ્રોડિન્જ૨ સમીક૨ણ
$i \hbar \frac{\partial \Psi(\overrightarrow{\mathrm{r}}, \mathrm{t})}{\partial \mathrm{t}}=-\frac{\hbar^{2}}{2 \mathrm{~m}} \nabla^{2} \Psi(\overrightarrow{\mathrm{r}}, \mathrm{t})+\mathrm{V}(\overrightarrow{\mathrm{r}}) \Psi(\overrightarrow{\mathrm{r}}, \mathrm{t})$
ને ગોલીય ધ્રુવીય યામ પદ્ધતિમાં વિભાજીત કરો.
અથવા
લાપ્લાસ સમીક૨ણ લખો અને તેને કાર્તેઝીય યામ પદ્ધતિમાં છુટું પાડો.
2. (a) આપેલ વિકલ સમીકરણને ઘાત શ્રેણી દ્વારા ઉેકેલ મેળવો.
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}+2 x \frac{\mathrm{dy}}{\mathrm{d} x}+2 \mathrm{y}=0$

અથવા

બેસેલ સમીકરણ લખો અને તેને ફોબોનિયસની રીતથી ઉ૬ેલો.
(b) આપેલ સમીકરણ

$$
x^{2} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(x^{2}-1\right) \mathrm{y}=0 \text { નો એક ઉકેલ } \mathrm{J}_{1}(x) \text { છે. રોન્સ્કીયન (Wronskian)ની પદ્ધતિનો }
$$

ઉપયોગ કરીને તેનો બીજો સ્વતંત્ર ઉકકેલ મેળવો.
અથવા
રેખીય તંત્ર માટે પ્રથમ કક્ષાના અચથ સહુુુણકો ધરાવતા સમીક૨ણો
$\frac{\mathrm{d} x_{1}}{\mathrm{dt}}=5 x_{1}+4 x_{2}$
$\frac{\mathrm{d} x_{2}}{\mathrm{dt}}=-x_{1}+x_{2}$
માટે દ્વિતીય રેખીય સ્વતંત્ર ઉેકેલ મેળવો.
3. (a) ડી' એલેમ્બટનો સિધ્ધાંતનો ઉપયોગ કરીને કોન્ઝર્વેટીવ હોલોનોમીક તંત્ર માટે લાગ્રાન્જનું ગતિનું સમીક૨ણ મેળવો.

ઉદાહ૨ણ સહિત સમજાવો :
(1) હોલોનોમીક અને નોન-હોલોનોમીક કંસ્ટ્રેઈન્ટ.
(2) સ્કેલરોનોમસ અને રીહોનોમસ કંસ્ટ્રેઈન્ટ.
(b) દઢ પદાર્થની ગતિ ઊર્જા માટેનું સમીક૨ણ મેળવો.

અથવા

જડત્વની ચાકમાત્રાનો ટેન્શ૨ સમજાવો.
4. (a) કા૨ક a અને a^{+}નું સૂત્ર લખો અને સાબિત કરો કे :
(i) $\left[\mathrm{a}, \mathrm{a}^{+}\right]=1$
(ii) $\left[\mathrm{a}^{+} \mathrm{a}, \mathrm{a}\right]=-\mathrm{a}$

તથા દર્શાવો કે a^{+}વધતો અને a ઘટતો નીસરણી કા૨ક (ladder operator) છે.

અથવા

કોણીય વેગમાનનાં વર્ગના સંદર્ભે નીચેના સૂત્રો મેળવો :
(i) $\mathrm{L}^{2}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right]$
(ii) $\frac{1}{\sin \theta} \frac{\mathrm{~d}}{\mathrm{~d} \theta}\left(\sin \theta \frac{\mathrm{~d} \oplus}{\mathrm{~d} \theta}\right)+\left(\lambda-\frac{\mathrm{m}^{2}}{\sin ^{2} \theta}\right) \oplus(\oplus)=0$
(b) "પપેરીટી કારક" પ૨ ટૂંકનોંધ લખો.

અથવા

એક પારિમાણિક સરળ આવર્ત દોલકના સ્થિર સ્થિતિઓના (stationary states) ગુણધર્મની ચર્ચા કરે.
5. નીચેના પ્રશ્નોના ઉત્તર લખો :
(1) દ્વિતીય ક્રમનાં રેખીય વિકલ સમીક૨ણ માટે સામાન્ય બિંદુ વ્યાખ્યાયિત કરો.
(2) ઈீન્ડિસિયલ (indicial) સમીક૨ણનો ઉપપયોગ કરીને
$x^{2} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}+x \frac{\mathrm{dy}}{\mathrm{d} x}+\left(x^{2}-\frac{1}{4}\right) \mathrm{y}=0$ માટ સામાન્ય ઉેકેલ લબ.
(3) નિયમિત એકાંકીબિંદુ વ્યાખ્યાયિત કરો.
(4) રોન્સ્કીયન એટલે શું?
(5) ત્રિપારિમાણીક તરંગ સમીક૨ણ લખો.
(6) બેસેલ વિધેય માટે નિયમિત એકાંકી બિંદુ લખો.
(7) व્યાખ્યા આપો: ચક્રીય યામો
(8) લાગ્રાન્જીયન ફોરમ્યુલેશનના ફાયદાઓ જણાવો.
(9) $\Phi m(\phi)=A e^{i m \phi}$ માં A શું છે ? તેનું મૂલ્ય જણાવો.
(10) શૂન્ય બિંદુ ઊર્જા શું છે ? એક પારિમાણીક સ૨થ આવર્ત દોલક માટે તેનું મૂલ્ય જણાવો.
(11) L^{2} શા માટ $(2 l+1)$ ફોલ્ડ ડીજનરેટ છે?
(12) સ૨ળ આવર્ત દોલક માટે ઊર્જા આયગન મૂલ્ય E_{n} નું સૂત્ર લખો.
(13) હેલ્મહોલ્ટઝ સમીકરણ પ૨વલયાંક યામ પદ્ધતિમાં લખો.
(14) હર્માઇટ પોલીનોમીયલ માટે જનરેટીંગ વિધેય લખો.
\qquad

MB-109

March-2018

B.Sc., Sem.-V

CC-301 : Physics
Time : 3 Hours]
[Max. Marks : 70

Instruction : (1) All questions carry equal marks.
(2) Symbol have their usual meaning.

1. (a) Separate Helmholtz equation in spherical polar co-ordinate system.

OR

Separate the diffusion equation
$\frac{\partial \rho(\overrightarrow{\mathrm{r}}, \mathrm{t})}{\partial \mathrm{t}}=D \nabla^{2} \rho(\overrightarrow{\mathrm{r}}, \mathrm{t})$
in cylindrical co-ordinate system.
(b) Separate the time dependent Schrodinger equation
$i \hbar \frac{\partial \Psi(\overrightarrow{\mathrm{r}}, \mathrm{t})}{\partial \mathrm{t}}=-\frac{\hbar^{2}}{2 \mathrm{~m}} \nabla^{2} \Psi(\overrightarrow{\mathrm{r}}, \mathrm{t})+V(\overrightarrow{\mathrm{r}}) \Psi(\overrightarrow{\mathrm{r}}, \mathrm{t})$
in spherical polar co-ordinate system.
OR
Write Laplace equation in Cartesian co-ordinate and separate it.
2. (a) Solve the differential equation using power series method.
$\frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}+2 y=0$

> OR

Write Bessel's equation. Solve it using Frobenius method.
(b) One solution of the differential equation
$x^{2} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}+x \frac{\mathrm{dy}}{\mathrm{d} x}+\left(x^{2}-1\right) y=0$ is $\mathrm{J}_{1}(x)$. Obtain second independent solution using method of Wronskian.

OR

Systems of linear, first order equations with constant co-efficient are
$\frac{\mathrm{d} x_{1}}{\mathrm{dt}}=5 x_{1}+4 x_{2}$
$\frac{\mathrm{d} x_{2}}{\mathrm{dt}}=-x_{1}+x_{2}$
Obtain second independent linear solution of given equation.
3. (a) Using D'Alembert's principle obtain Lagrange's equation of motion for conservative holonomic system.

OR

Explain with Illustration :
(1) Holonomic and non-Holonomic constraints.
(2) Scleronomous and Rheonomous constraints.
(b) Obtain an expression for the kinetic energy of a rigid body.

OR

Explain moment of inertia tensor.
4. (a) Write the expression for operator a and a^{+}and prove :
(i) $\left[\mathrm{a}, \mathrm{a}^{+}\right]=1$
(ii) $\left[\mathrm{a}^{+} \mathrm{a}, \mathrm{a}\right]=-\mathrm{a}$

Also show that a^{+}is raising and a is lowering ladder operator.

OR

Derive following equation in the terms of square of angular momentum L^{2}
(i) $\mathrm{L}^{2}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right]$
(ii) $\frac{1}{\sin \theta} \frac{\mathrm{~d}}{\mathrm{~d} \theta}\left(\sin \theta \frac{\mathrm{~d} \oplus}{\mathrm{~d} \theta}\right)+\left(\lambda-\frac{\mathrm{m}^{2}}{\sin ^{2} \theta}\right) \oplus(\oplus)=0$
(b) Write short note on "Parity Operator".

OR

Discuss the property of stationary states of one dimensional simple harmonic oscillator.
5. Write answer of following questions :
(1) Define ordinary point of the second order linear differential equation.
(2) Using indicial equation, write general solution of differential equation
$x^{2} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}+x \frac{\mathrm{dy}}{\mathrm{d} x}+\left(x^{2}-\frac{1}{4}\right) \mathrm{y}=0$
(3) Define : Regular singular point.
(4) What is Wronskian ?
(5) Write three dimensional wave equation.
(6) Write regular singular point of Bessel's function.
(7) Define : Cyclic co-ordinate.
(8) Write advantages of Lagrangian formulation.
(9) In $\Phi m(\phi)=A e^{\mathrm{im} \mathrm{\phi} \phi}$ what is A? Gives its value.
(10) What is "Zero point energy"? Write value of its for one dimensional simple harmonic oscillator.
(11) Why L^{2} is $(2 l+1)$ fold degenerate?
(12) Write expression for energy Eigen value E_{n} for the simple harmonic oscillator.
(13) Write Helmholtz equation in parabolic co-ordinate system.
(14) Write generating function of the Hermite polynomial.

