Seat No. : **MB-109** March-2018 B.Sc., Sem.-V CC-301 : Physics [Max. Marks : 70 Time : 3 Hours] દરેક પ્રશ્નના ગુણ સરખા છે. (1) સૂચના : સંકેતો પ્રચલિત અર્થમાં છે. (2)(a) હેલ્મ હોલ્ટ્ઝ સમીકરણને ગોલીય ધ્રુવીય યામ પદ્ધતિમાં વિભાજીત કરો. 1. અથવા વિસરણ સમીકરણ $\frac{\partial \rho(\vec{r},t)}{\partial t} = D\nabla^2 \rho(\vec{r},t)$ ને નળાકારીય યામ પદ્ધતિમાં વિભાજીત કરો. (b) સમય પર આધારિત શ્રોડિન્જર સમીકરણ $i\hbar \frac{\partial \Psi(\vec{r},t)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi(\vec{r},t) + V(\vec{r}) \Psi(\vec{r},t)$ ને ગોલીય ધ્રુવીય યામ પદ્ધતિમાં વિભાજીત કરો. 7 અથવા લાપ્લાસ સમીકરણ લખો અને તેને કાર્તેઝીય યામ પદ્ધતિમાં છુટું પાડો. (a) આપેલ વિકલ સમીકરણને ઘાત શ્રેણી દ્વારા ઉકેલ મેળવો. 2. 7 $\frac{d^2y}{dr^2} + 2x\frac{dy}{dr} + 2y = 0$ અથવા બેસેલ સમીકરણ લખો અને તેને ફ્રોબેનિયસની રીતથી ઉકેલો. (b) આપેલ સ<u>મીકરણ</u> $x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - 1) y = 0$ નો એક ઉકેલ J₁(x) છે. રોન્સ્કીયન (Wronskian)ની પદ્ધતિનો ઉપયોગ કરીને તેનો બીજો સ્વતંત્ર ઉંકેલ મેળવો. 7 અથવા <mark>રેખીય તંત્ર મ</mark>ાટે પ્રથમ કક્ષાના અચળ સહગુણકો ધરાવતા સમીકરણો $\frac{\mathrm{d}x_1}{\mathrm{d}t} = 5x_1 + 4x_2$ $\frac{\mathrm{d}x_2}{\mathrm{d}t} = -x_1 + x_2$ માટે ક્રિતીય રેખીય સ્વતંત્ર ઉકેલ મેળવો.

MB-109

P.T.O.

(a) ડી' એલેમ્બટનો સિધ્ધાંતનો ઉપયોગ કરીને કોન્ઝર્વેટીવ હોલોનોમીક તંત્ર માટે લાગ્રાન્જનું ગતિનું

સમીકરણ મેળવો. **અથવા**

ઉદાહરણ સહિત સમજાવો :

3.

- (1) હોલોનોમીક અને નોન-હોલોનોમીક કંસ્ટ્રેઈન્ટ.
- (2) સ્કેલરોનોમસ અને રીહોનોમસ કંસ્ટ્રેઈન્ટ.
- (b) દઢ પદાર્થની ગતિ ઊર્જા માટેનું સમીકરણ મેળવો.

અથવા

જડત્વની ચાકમાત્રાનો ટેન્શર સમજાવો.

(i) $[a, a^+] = 1$ (ii) $[a^+a, a] = -a$

તથા દર્શાવો કે a⁺ વધતો અને a ઘટતો નીસરણી કારક (ladder operator) છે.

અથવા

કોણીય વેગમાનનાં વર્ગના સંદર્ભે નીચેના સૂત્રો મેળવો :

(i)
$$L^{2} = -\hbar^{2} \left[\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta} \right) + \frac{1}{\sin^{2}\theta} \frac{\partial^{2}}{\partial\phi^{2}} \right]$$

(ii) $\frac{1}{2} \frac{d}{\partial\theta} \left(\sin\theta \frac{d\Phi}{\partial\theta} \right) + \left(\lambda - \frac{m^{2}}{2} \right) \Phi = 0$

(ii)
$$\frac{1}{\sin\theta} \frac{1}{d\theta} \left(\sin\theta \frac{1}{d\theta} \right) + \left(\lambda - \frac{1}{\sin^2\theta} \right) \oplus =$$

(b) "પેરીટી કારક" પર ટૂંકનોંધ લખો.

અથવા

એક પારિમાણિક સરળ આવર્ત દોલકના સ્થિર સ્થિતિઓના (stationary states) ગુણધર્મની ચર્ચા કરો.

5. નીચેના પ્રશ્નોના ઉત્તર લખો :

- (1) દ્વિતીય ક્રમનાં રેખીય વિકલ સમીકરણ માટે સામાન્ય બિંદુ વ્યાખ્યાયિત કરો.
- (2) ઈન્ડિસિયલ (indicial) સમીકરણનો ઉપયોગ કરીને

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - \frac{1}{4})y = 0$$
 માટે સામાન્ય ઉકેલ લખો.

- (3) નિયમિત એકાંકીબિંદુ વ્યાખ્યાયિત કરો.
- (4) રોન્સ્કીયન એટલે શું ?
- (5) ત્રિપારિમાણીક તરંગ સમીકરણ લખો.
- (6) બેસેલ વિધેય માટે નિયમિત્ એકાંકી બિંદુ લખો.
- (7) વ્યાખ્યા આપો : ચક્રીય યામો
- (8) લાગ્રાન્જીયન ફોરમ્યુલેશનના ફાયદાઓ જણાવો.
- (9) $\Phi m(\phi) = A e^{im\phi} H A \dot{s}_{i} \dot{s}_{i} ? \dot{c}_{i} \dot{s}_{j}$

(10) શૂન્ય બિંદુ ઊર્જા શું છે ? એક પારિમાણીક સરળ આવર્ત દોલક માટે તેનું મૂલ્ય જણાવો.

- (11) L^2 શા માટે (2*l* + 1) ફોલ્ડ ડીજનરેટ છે ?
- (12) સરળ આવર્ત દોલક માટે ઊર્જા આયગન મૂલ્ય E_n નું સૂત્ર લખો.
- (13) હેલ્મહોલ્ટઝ સમીકરણ પરવલયાંક યામ પદ્ધતિમાં લખો.
- (14) હર્માઇટ પોલીનોમીયલ માટે જનરેટીંગ વિધેય લખો.

MB-109

7

7

7

14

Seat No. :

MB-109

March-2018

B.Sc., Sem.-V

CC-301 : Physics

[Max. Marks : 70 Time : 3 Hours] **Instruction** : (1)All questions carry equal marks. (2)Symbol have their usual meaning. Separate Helmholtz equation in spherical polar co-ordinate system. 7 1. (a) OR Separate the diffusion equation $\frac{\partial \rho(\vec{r},t)}{\partial t} = D\nabla^2 \rho(\vec{r},t)$ in cylindrical co-ordinate system. (b) Separate the time dependent Schrodinger equation $i\hbar \frac{\partial \Psi(\vec{r},t)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi(\vec{r},t) + V(\vec{r}) \Psi(\vec{r},t)$ in spherical polar co-ordinate system. 7 OR Write Laplace equation in Cartesian co-ordinate and separate it. Solve the differential equation using power series method. 2. (a) 7 $\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{d}x^2} + 2x\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 0$ OR Write Bessel's equation. Solve it using Frobenius method. One solution of the differential equation (b) $x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - 1) y = 0$ is J₁(x). Obtain second independent solution using 7 method of Wronskian. OR Systems of linear, first order equations with constant co-efficient are $\frac{\mathrm{d}x_1}{\mathrm{d}t} = 5x_1 + 4x_2$ $\frac{\mathrm{d}x_2}{\mathrm{d}t} = -x_1 + x_2$ Obtain second independent linear solution of given equation. **MB-109** 3 **P.T.O.**

OR

Explain with Illustration :

- (1) Holonomic and non-Holonomic constraints.
- (2) Scleronomous and Rheonomous constraints.
- (b) Obtain an expression for the kinetic energy of a rigid body.

OR

Explain moment of inertia tensor.

(a) Write the expression for operator a and a^+ and prove :

(i) $[a, a^+] = 1$ (ii) $[a^+a, a] = -a$

Also show that a^+ is raising and a is lowering ladder operator.

OR

Derive following equation in the terms of square of angular momentum L^2 .

(i)
$$L^{2} = -\hbar^{2} \left[\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta} \right) + \frac{1}{\sin^{2}\theta} \frac{\partial^{2}}{\partial\phi^{2}} \right]$$

(ii) $\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\oplus}{d\theta} \right) + \left(\lambda - \frac{m^{2}}{\sin^{2}\theta} \right) \oplus = 0$

(b) Write short note on "Parity Operator".

Discuss the property of stationary states of one dimensional simple harmonic oscillator.

- 5. Write answer of following questions :
 - (1) Define ordinary point of the second order linear differential equation.
 - (2) Using indicial equation, write general solution of differential equation

$$x^{2} \frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - \frac{1}{4})y = 0$$

- (3) Define : Regular singular point.
- (4) What is Wronskian ?
- (5) Write three dimensional wave equation.
- (6) Write regular singular point of Bessel's function.
- (7) Define : Cyclic co-ordinate.
- (8) Write advantages of Lagrangian formulation.
- (9) In Φ m (ϕ) = Ae^{im ϕ} what is A ? Gives its value.
- (10) What is "Zero point energy"? Write value of its for one dimensional simple harmonic oscillator.
- (11) Why L^2 is (2l + 1) fold degenerate ?
- (12) Write expression for energy Eigen value E_n for the simple harmonic oscillator.
- (13) Write Helmholtz equation in parabolic co-ordinate system.
- (14) Write generating function of the Hermite polynomial.

MB-109

4.

14

7

7