\qquad

ME-107

March-2018
B.Sc., Sem.-V

CC-304 : Physics
Time : 3 Hours]
[Max. Marks : 70
સૂચના : (1) સંજ્ઞાઓ તેમના પ્રચલિત અર્થ ધરાવે છે.
(2) જમણી બાજુ દર્શાવિલ અંક પ્રશ્નના ગુણ દર્શાવે છે.
(3) દરેક પ્રશ્ન સમાન ગુણ ધરાવે છે.

1. (a) ડેસીબેલ એટલે શું ? વોલ્ટમીટરનું ડેસીબેલ મીટ૨માં રૂપાંત૨ણ સમજાવો.

અથવા

"હાર્માનિક ડિસ્ટોર્શન" એટલે શું ? હાર્માનિક ડિસ્ટોર્શનની ગણતરી માટેની ત્રણ બિંદુ રીતનું વર્ણાન કરો.
(b) નીચે દર્શાવેલ dB ગઈઈન સમીકરણ મેળવો :
$\mathrm{dB}=20 \log \left(\frac{\mathrm{~V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{i}}}\right)+10 \log \left(\frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{o}}}\right)$

અથવા

(i) એક એમ્પ્લિફાય૨ના સિગ્નલ ઈનપુટ વોલ્ટેજ $V_{i}=0.25$ volt છે અને તે ઉદ્ગગમમાંથી 1 mA પ્રવાહ મેળવે છે. એમ્પ્લિફાય૨ 10 mA પ્રવાહે ઉદ્ભારને 8 volt આપે છે તો પ્રવાહ ગોઈન, વોલ્ટેજ ગોઈન અને પાવર ગોઈન મેળવો.
(ii) એક એમ્પ્લિફાયરનો પાવર ગેઈન 30 dB મળે છે. જો આઉટપુટ પાવ૨ 6 watt હોય તો ઈનપુટ પાવ૨ની ગણુતરી કરો.
2. (a) CE એમ્પ્લિફાયરનો પરિપથ દોરો. નિમ્ન આવૃત્તિ રીસ્પોન્સ ઉિપ૨ બાયપાસ કેપેસીટ૨ C_{e} ની અસ૨ માટે તેનું પૃથક્ક૨ણ કરો.

અથવા
સમજાવો : અવરોધકીય ભાર સાથેનું એપ્રોક્સીમેટ CE-ઉચ્્ચ આવૃત્તિ મોડેલ.
(b) એમ્પ્લિફાયરનો સ્ક્વેર વેવ પ્રતિ નિમ્ન આવૃત્તિ રીસ્પોન્સ સમજાવો.

અથવા

ટ્રાન્સફોર્મર કપ૯્ડ એમ્પ્લિફાયરનો ઉચ્ચ્ય આવૃત્તિ પ્રતિ રીસ્પોન્સ સમજાવો.
(a) ધારો કે 0000 થી 0011 માટે "High" આઉટપુુટ, 0100 થી 1001 માટે "Low" આઉટપુુટ અને 1010 થી 1111 માટે "High" આઉટપુટ મળે છે. તે માટે SOP અને POS પરિપથો ડીઝાઈન કરો. 7 અથવા
(i) નીચેના બુલીઅન સમીક૨ણનું સાદું ર૫ આપો :

$$
\mathrm{Y}=(\overline{\mathrm{A}}+\mathrm{B})(\mathrm{A}+\mathrm{B})
$$

(ii) બે ઈનપુટ ધરાવતાં EX-OR ગેઈટની વિસ્તૃત સમજૂતી આપો.
(b) "Clocked RS" ફ્લિપ-ફલોપ વિશે નોંધ લખો.

અથવા

JK ફ્લિપ-ફલોપની સમજૂતી આપો.
4. (a) T અને π નેટવર્કનું પ૨સ્પ૨ ३પાંત૨ણ સમજાવો.

અથવા
થેવેનીનના પ્રમેયનું કથન લખો અને સાબિતી આપો.
(b) સમાંત૨ અનુનાદ પરિપથ સમજાવો, સમાંત૨ અનુનાદ સમયે આવૃત્તિ f f મેળવો. સાબિત કરો કે, સમાંત૨ અનુનાદ સમયે અવબાધ, $\mathrm{R}_{\mathrm{ar}}=\frac{\mathrm{L}}{\mathrm{CR}}$ છે.

અથવા

અનુનાદ આવૃત્તિથી નાના વિચલન માટે શ્રેણી અનુનાદ પરિપથનો અવબાધ $\mathrm{Z}=\mathrm{R}[1+\mathrm{jQ} \delta(2-\delta)]$ છે તેમ તારવો.
5. ટૂંકમાં ઉત્તર આપો :
(a) પાવ૨ ગોઈનની વ્યાખ્યા આપો.
(b) ३પાંત૨ણ કાર્યક્ષમતાની વ્યાખ્યા આપો.
(c) બેલ્સ (bells) ની સંખ્યા માટેનું સમીકરણ લખો.
(d) Class-A એમ્પ્લિફાયર એટલે શું?
(e) એમ્પ્લિફાયર સ્ટેજીઝનું "કાસ્કેડિંગ" એટલે શું ?
(f) "બાયપાસ કેપેસીટ૨"નું કાર્ય સમજાવો.
(g) ટ્રાન્સ કન્ડકટન્સ એટલે શું ?
(h) કાર્નુ મેપમાં "Pair" એટલે શું?
(i) ત્રણ ઈનપુટ ધરાવતાં EX-OR ગેઈટનો સિમ્બોલ દોરો.
(j) બુલીઅન સમીકરણ $Y=A \bar{B}+A B$ નું સાદું ૩૫ આપો.
(k) ફ્લિપ-ફલોપ એટલે શું ?
(1) શ્રેણી અનુનાદ એટલે શું ?
(m) "Bandwidth" ની વ્યાખ્યા આપો.
(n) "ટ્રાન્સફર ઈૅન્પીડન્સ" ની વ્યાખ્યા આપો.
\qquad

ME-107

March-2018
B.Sc., Sem.-V

CC-304 : Physics
Time : 3 Hours]
[Max. Marks : 70
Note : (1) Symbols have their usual meaning.
(2) Figures on R.H.S. show marks of question.
(3) All questions carry equal marks.

1. (a) What is decibel? Explain the conversion of voltmeter into a decibel meter.

What is "harmonic distortion" ? Discuss three point method for calculating harmonic distortion.
(b) Obtain dB gain equation as given below :
$\mathrm{dB}=20 \log \left(\frac{\mathrm{~V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{i}}}\right)+10 \log \left(\frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{o}}}\right)$
OR
(i) An amplifier has a signal input voltage $\mathrm{V}_{\mathrm{i}}=0.25$ volt and draws 1 mA from the source. The amplifier delivers 8 volt to a load at 10 mA . Determine the current, voltage and power gain.
(ii) The power gain of an amplifier is obtained 30 dB . If the output power is 6 watt, calculate the input power.
2. (a) Draw the circuit diagram of CE amplifier and analyse it for the effect of bypass capacitor C_{e} on low frequency response.

OR

Explain: Approximate CE high frequency model with resistive load.
(b) Explain amplifier low frequency response to a square wave.

OR

Explain high frequency response to a transformer coupled amplifier.
3. (a) Suppose the output for 0000 to 0011 is "high", 0100 to 1001 is "low", and 1010 to 1111 is "high". Design SOP and POS circuits.

OR

(i) Simplify following Boolean equation :

$$
\mathrm{Y}=(\overline{\mathrm{A}}+\mathrm{B})(\mathrm{A}+\mathrm{B})
$$

(ii) Explain in detail two input EX-OR gate.
(b) Write a note on clocked RS flip-flop.

OR

Explain JK flip-flop.
4. (a) Explain mutual conversion between T and π networks.

OR

State and prove Thevenin's theorem.
(b) Explain parallel resonance circuit. Obtain the frequency at anti-resonance, $\mathrm{f}_{\text {ar }}$. Prove that impedance at the time anti-resonance is $\mathrm{R}_{\mathrm{ar}}=\frac{\mathrm{L}}{\mathrm{CR}}$.

OR
Derive that the impedance of the series resonant circuit, for small deviation from the resonant frequency, is
$\mathrm{Z}=\mathrm{R}[1+\mathrm{jQ} \delta(2-\delta)]$.
5. Answer in short :
(a) Define power gain.
(b) Define conversion efficiency.
(c) What is "number of bells" ? Write its equation.
(d) What is class A amplifier?
(e) What is "Cascading" of amplifier stages ?
(f) Explain work of "Bypass Capacitor".
(g) What is trans-conductance?
(h) What is "Pair" in Karnaugh Map ?
(i) Draw symbol for three input EX-OR gate.
(j) Simply Boolean equation $Y=A \bar{B}+A B$.
(k) What is flip-flop?
(l) What is series resonance?
(m) Define Bandwidth.
(n) Define Transfer Impedance.

