Seat No. : _____

DA-112

December-2018 M.Sc., Sem.-I

401 : Physics (Quantum Mechanics-I and Mathematical Physics-I) (New and Old Course)

Time : 2:30 Hours]

[Max. Marks : 70

1.	(A)	(1)	Discuss perturbation theory for degenerate states. Show that first order correction to energy can be obtained by diagonalizing $m \times n$ matrix.	7
		(ii)	Explain stark effect for first excited state of hydrogen atom. Find first order correction to the energy and show that degeneracy is not completely remove when H-atom is placed in a uniform electric field.	
			[Hint : Consider matrix elements of perturbed Hamiltonian for which	
			$l = l' = 0, l = l' = 1$ and $m \neq m'$ are zero].	7
		(i)	Show that $W \ge E_0$ and $[_{\psi} - W^2]^{1/2} \ge (W - E_0)$.	7
		(ii)	Find out minimum energy of the He-atom using variation method.	7
	(B)	Ansv	wer any four questions :	4
		(1)	Show that for the electric dipole when placed in the uniform electric field of	

- (1) Show that for the electric dipole when placed in the uniform electric field of intensity E, the term $\frac{1}{2} \alpha E^2$ has unit of energy. Here, α represents polarizability.
- (2) Show that $\nabla_{11} = \nabla_{22}$.
- (3) Write degenerate states for n = 4.
- (4) What will be the scalar product corresponding to the eigen state for energy
 + 3eEa and -3eEa ?
- (5) When diploe moment is aligned to uniform electric field, what will be its energy eigen value ?
- (6) What is the numerical value of effective valency of the atom ?

DA-112

P.T.O.

- 2. (A) (i) Write an equation of propagator $G(\vec{r}, \vec{r}'; t, 0)$. Find out differential equations for propagator and retarded propagator.
 - (ii) Show that in Sudden approximation transition probability is directly proportional to time T and matrix element of $H_0 H$ between final and initial states.

7

7

4

7

OR

- (i) Obtain Bohr-Sommerfeld quantization condition.
- (ii) Using Bohr-Sommerfeld quantization condition show that energy of simple harmonic oscillator is given by $E = \hbar \omega \left(n + \frac{1}{2} \right)$.
- (B) Answer any **four** questions.
 - (1) Define Heaviside function.
 - (2) What will be the dimension of S(x) in equation $u(x) = A(x) e^{-h}$
 - (3) In WKB approximation solution of the Schrödinger equation is expanded in power _____. Complete the statement.
 - (4) In non-classical region, kinetic energy of particle is negative. True or false
 - (5) If V(x) is slowly varying function, then what will be P(x)dx?
 - (6) What do you mean by classical turning point?

3. (A) Write the following :

Prove that Laplace transform :

(i) $L \{\sin kt\} = \frac{k}{s^2 + k^2}$ and $L \{t^n\} = \frac{n!}{s^{n+1}}, s > 0, n > -1$

(ii) Evaluate the inverse Laplace transform, $L^{-1}\left\{\frac{s^2}{(s^2 + a^2)(s^2 + b^2)}\right\}$. 7

OR

(i) The motion of a body falling in a resisting medium is given by 7 $m\frac{d^2x(t)}{dt^2} = mg - b\frac{dx(t)}{dt}$, when the retarding force is proportional to the velocity. Find x(t) and x'(t) for the initial conditions x(0) = x'(0) = 0. (ii) Using Laplace transforms, solve the set of equations : y' - 2y + z = 0, and z' - y - 2z = 0, with initial conditions: y(+0) = 1, z(+0) = 0. Given : $L\{e^{-at} \sin bt\} = b/[(s+a)^2 + b^2]$, and

$$L\{e^{-at} \cos bt\} = (s+a)/[(s+a)^2+b^2]$$

DA-112

- (B) Answer the following : (Any **Three** out of **Five**)
 - (1) Write the equation representing linearity operation for Laplace transform.
 - (2) Give the definition of Heaviside unit step function.
 - (3) Write an expression for the Laplace transform of third derivative of F(t).
 - (4) What is the Laplace transform of Dirac delta function

 $L\{\delta(t-t_0)\} = \dots t_0 \ge 0$?

- (5) For $s > 0, L\{1\} = \dots$.
- 4. (A) Write the answer of the following :
 - (i) Prove that every tensor of second rank be resolved into anti-symmetric and symmetric part. 7
 - (ii) Give definition of a group. Explain four properties of a group with relevant examples. Give a group table of order three with different elements A, B, E. 7

OR

- (i) If A_{ij} , B_{ij} , C_{ij} and D_{ij} tensors of second rank and same type, then prove that $A_{ij} B_{ij} = D_{ij}$ and $A_{ij} + B_{ij} = C_{ij}$. 7
- (ii) Define a class. Discuss four properties of a class with relevant examples. 7What do you understand by product of classes ?

(B) Answer any three short questions :

- 1. List the difference between homomorphism and isomorphism.
- 2. What do you understand by 'conjugate of subgroups'?
- 3. Give an example of second rank tensor.
- 4. Triad has <u>components</u>.

Tensors can be multiplied by other tensors to form new tensors' This sentence is ______.s (correct, wrong)

3

DA-112

5.

3

DA-112