Seat No. : \qquad

DB-147

December-2018
M.Sc., Sem.-I

402 : Mathematics (Measure \& Integration) (New)

1. (A) (i) True or False ? If G is an open subset of $[a, b]$ and $|G|=0$, then $G=\phi$. (Give details).
(ii) Show that $\mathrm{E} \subset[\mathrm{a}, \mathrm{b}]$ is measurable if and only if given $\varepsilon<0$ there exist a closed set $\mathrm{F} \subset \mathrm{E}$ and an open set $\mathrm{G} \supset \mathrm{E}$ such that $|\mathrm{G}|-|\mathrm{F}|<\varepsilon$.

OR

(i) True or False ? If F is a closed subset of $[\mathrm{a}, \mathrm{b}]$ and $|\mathrm{F}|=0$, then $\mathrm{F}=\phi$. (Give details).
(ii) If $\mathrm{E} \subset[\mathrm{a}, \mathrm{b}]$ show that there exists a subset H of E such that H is of type $\mathrm{F} \sigma$ and $\underline{\mathrm{m}} \mathrm{H}=\underline{\mathrm{m}} \mathrm{E}$. (i.e. H and E have the same inner measure).
(B) Do any four :
(i) Let S be the subset of $[0,6]$ given by $\mathrm{S}=(2,3) \mathrm{U}(3,5]$. Find the outer measure of S . (Do not prove)
(ii) Let S be the subset of $[0,10]$ given by $S=(3,8]$. Find the inner measure of S. (Do not prove)
(iii) Find the length of the open set $\bigcup_{\mathrm{n}=1}^{\infty}\left(\frac{1}{2^{\mathrm{n}+1}}, \frac{1}{2^{\mathrm{n}}}\right)$.
(iv) True or False ? Every open subset of $[\mathrm{a}, \mathrm{b}]$ is measurable. (Do not prove)
(v) True or False ? Every closed subset of [a, b] is measurable. (Do not prove)
(vi) Give an example of a set $\mathrm{E} \subset[0,1]$, such that $\mathrm{mE}=0$. (Do not prove)
2. (A) (i) Suppose E_{1} and E_{2} are subsets of $[a, b]$. Further suppose that the symmetric difference of E_{1} and E_{2} has measure zero. Show that if E_{1} is measurable, then E_{2} is measurable.

Also show that $\mathrm{mE}_{2}=\mathrm{mE}_{1}$.
(ii) Let $\mathrm{f}(x)=\frac{1}{x} \quad(0<x<1)$,

$$
\mathrm{f}(0)=5, \quad \mathrm{f}(1)=7
$$

Prove that f is measurable on $[0,1]$

OR

(i) If E_{1} and E_{2} are measurable subsets of $[0,1]$ and if $\mathrm{mE}_{1}=1$, prove that $m\left(E_{1} \cap E_{2}\right)=\mathrm{mE}_{2}$.
(ii) Suppose that the function f on $[\mathrm{a}, \mathrm{b}]$ is measurable. Show that for every $\mathrm{S} \in \mathbb{R}$, the set $\{x \mid \mathrm{f}(x) \geq \mathrm{s}\}$ is a measurable set.
(B) Do any four :
(i) True or False? The union of uncountably many measurable subsets of [a, b] must be measurable. (Do not prove)
(ii) Give an example of an uncountable subset E of $[0,1]$ such that E is measurable. (Do not prove)
(iii) Consider the subsets $\mathrm{E}_{1}=\left(\frac{1}{2}, \frac{3}{4}\right)$ and $\mathrm{E}_{2}=\left(\frac{1}{4}, \frac{2}{3}\right)$ of $[0,1]$. Find the measure of the symmetric difference of E_{1} and E_{2}.
(iv) Let $S=\left\{x \in[0,1] \left\lvert\, x^{2}>\frac{1}{4}\right.\right\}$. Find the measure of S.
(v) Suppose f is a measureable function on $[0,1]$, and let g be defined by $\mathrm{g}(x)=\mathrm{f}(x), x \notin\left\{0, \frac{1}{2}, 1\right\} . \mathrm{g}(0)=\mathrm{g}\left(\frac{1}{2}\right)=\mathrm{g}(1)=5$. Is g measurable ?
(vi) Let f, g be functions defined on $[0,2]$ as follows :
$\mathrm{f}(x)=x, \mathrm{~g}(x)=x^{2}$.
Draw the graph of the function $\max (\mathrm{f}, \mathrm{g})$.
3. (A) (i) Show that if f is a bounded measureable function on [a, b], then f is Lebesgue integrable.
(ii) Let E_{1} and E_{2} be measurable subsets of $[0,1]$. Suppose $E_{1} \cup E_{2}=[0,1]$, show that at least one of the sets $\mathrm{E}_{1}, \mathrm{E}_{2}$ has measure $\geq \frac{1}{2}$.

OR

(i) Let f be defined on $[0,1]$ by $\mathrm{f}(x)=x$. Let E_{1} be the inverse image under f of $\left[0, \frac{1}{2}\right]$. Let E_{2} be the inverse image under f of $\left[\frac{1}{2}, \frac{3}{4}\right]$. Let E_{3} be the inverse image under f of $\left[\frac{3}{4}, 1\right]$. Show that $P=\left\{\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}\right\}$ is a measureable partition of $[0,1]$. Calculate $\mathrm{U}[\mathrm{f} ; \mathrm{p}]$ and $\mathrm{L}[\mathrm{f} ; \mathrm{p}]$.
(ii) Suppose E_{1} and E_{2} are measureable subsets of $[a, b]$ and f is a bounded measurable (so Lebesgue integrable) function defined on [a, b]. Prove that $\int_{E_{1}} \mathrm{f}+\int_{\mathrm{E}_{2}} \mathrm{f}=\underset{\mathrm{E}_{1} \cup \mathrm{E}_{2}}{\int \mathrm{f}}+\underset{\mathrm{E}_{1} \cap \mathrm{E}_{2}}{\int \mathrm{f}}$.
(B) Do any three :
(i) Suppose $\mathrm{E} \subset[0,1]$ is measurable and $\mathrm{mE}=\frac{1}{2}$. Find $\int_{\mathrm{E}} 1$. (Do not prove)
(ii) Suppose f is defined on $[0,1]$ by $\mathrm{f}(x)=x$. Suppose $\mathrm{E}=\left(\frac{1}{2}, \frac{3}{4}\right)$. Find $\int_{\mathrm{E}} \mathrm{f}$.
(iii) Suppose E_{1} and E_{2} are disjoint measurable subsets of $[a, b]$ and f is a bounded function in $\mathcal{L}[a, b]$. Suppose $\int_{E_{1}} f=2$ and $\int_{E_{2}} f=3$. Find $\underset{E_{1} \cup E_{2}}{\int f}$.

(Do not prove)

(iv) Let $\mathrm{f}(x)=0$ if x is rational, $x \in[0,1]$ and $\mathrm{f}(x)=1$ if x is irrational, $x \in[0,1]$. Find $\int_{0}^{1} \mathrm{f}$. (Do not prove).
(v) Evaluate $\int_{0}^{\pi} \mathrm{f}$, where $\mathrm{f}(x)=\sin x, x \in[0, \pi]$.
4. (A) (i) Let $\mathrm{f}(x)=\frac{1}{x^{\mathrm{p}}},(0<x \leq 1)$

Prove that $\mathrm{f} \in \mathcal{L}[0,1]$, if $\mathrm{p}<1$.
Find the value of $\int_{0}^{1} \mathrm{f}$, if $\mathrm{p}<1$.
(ii) If $\mathrm{f} \in \mathcal{L}[\mathrm{a}, \mathrm{b}]$ and if $\mathrm{F}(x)=\int_{\mathrm{a}}^{x} \mathrm{f}(\mathrm{t}) \mathrm{dt},(\mathrm{a} \leq x \leq \mathrm{b})$. Prove that F is continuous on $[\mathrm{a}, \mathrm{b}]$.

OR

(i) State Fatou's lemma. (Do not prove)
(ii) Let $\mathrm{f} \in \mathcal{L}[\mathrm{a}, \mathrm{b}]$. Let $\varepsilon>0$ be given. Show that there exists a $\delta>0$ such that $\left|\int_{\mathrm{E}} \mathrm{f}\right|<\varepsilon$ whenever E is a measurable subset of $[\mathrm{a}, \mathrm{b}]$ with $\mathrm{mE}<\delta$.
(B) Do any three :
(i) If $\mathrm{f}(x)=\frac{1}{x}(0<x \leq 1)$, find ${ }^{2} \mathrm{f}$.
(ii) If $\mathrm{f}(x)=\sin x(0 \leq x \leq 2 \pi)$, draw the graph of f^{+}.
(iii) True or False ? If $\mathrm{f}(x)=\mathrm{g}(x)$ almost everywhere $(x \in \mathrm{E})$ then ${ }^{5} \mathrm{f}(x)={ }^{5} \mathrm{~g}(x)$ almost everywhere $(x \in \mathrm{E}$). (Do not prove)
(iv) True or False ? If f and g are in $\mathcal{£}[\mathrm{a}, \mathrm{b}]$, then $\mathrm{fg} \in \mathcal{E}[\mathrm{a}, \mathrm{b}]$. (Do not prove).
(v) State (without proof) the Lebesgue Dominated Convergence Theorem.

