Seat No. :

DB-147

December-2018

M.Sc., Sem.-I

402 : Mathematics (Measure & Integration) (New)

Time : 2:30 Hours]

[Max. Marks : 70

- 1. (A) (i) True or False ? If G is an open subset of [a, b] and |G| = 0, then $G = \phi$. (Give details). 7
 - (ii) Show that $E \subset [a, b]$ is measurable if and only if given $\varepsilon < 0$ there exist a closed set $F \subset E$ and an open set $G \supset E$ such that $|G| |F| < \varepsilon$. 7

OR

- (i) True or False ? If F is a closed subset of [a, b] and |F| = 0, then $F = \phi$. (Give details).
- (ii) If $E \subset [a, b]$ show that there exists a subset H of E such that H is of type $F\sigma$ and $\underline{m} H = \underline{m} E$. (i.e. H and E have the same inner measure).

(B) Do any four :

- (i) Let S be the subset of [0, 6] given by S = (2, 3) U (3, 5]. Find the outer measure of S. (Do not prove)
- (ii) Let S be the subset of [0, 10] given by S = (3, 8]. Find the inner measure of S. (Do not prove)

(iii) Find the length of the open set $\bigcup_{n=1}^{\infty} \left(\frac{1}{2^{n+1}}, \frac{1}{2^n}\right)$.

(iv) **True** or False ? Every open subset of [a, b] is measurable. (Do not prove)

- (v) True or False ? Every closed subset of [a, b] is measurable. (Do not prove)
- (vi) Give an example of a set $E \subset [0, 1]$, such that mE = 0. (Do not prove)

DB-147

4

2. (A) (i) Suppose E_1 and E_2 are subsets of [a, b]. Further suppose that the symmetric difference of E_1 and E_2 has measure zero. Show that if E_1 is measurable, then E_2 is measurable.

Also show that $mE_2 = mE_1$.

(ii) Let
$$f(x) = \frac{1}{x}$$
 (0 < x < 1),
 $f(0) = 5$, $f(1) = 7$

Prove that f is measurable on [0, 1]

OR

- (i) If E_1 and E_2 are measurable subsets of [0, 1] and if $mE_1 = 1$, prove that $m(E_1 \cap E_2) = mE_2$.
- (ii) Suppose that the function f on [a, b] is measurable. Show that for every $S \in \mathbb{R}$, the set $\{x \mid f(x) \ge s\}$ is a measurable set.
- (B) Do any **four** :
 - (i) True or False ? The union of uncountably many measurable subsets of [a, b] must be measurable. (Do not prove)
 - (ii) Give an example of an uncountable subset E of [0, 1] such that E is measurable. (Do not prove)
 - (iii) Consider the subsets $E_1 = \left(\frac{1}{2}, \frac{3}{4}\right)$ and $E_2 = \left(\frac{1}{4}, \frac{2}{3}\right)$ of [0, 1]. Find the measure of the symmetric difference of E_1 and E_2 .

(iv) Let S =
$$\left\{x \in [0,1] | x^2 > \frac{1}{4}\right\}$$
. Find the measure of S.

- Suppose f is a measureable function on [0, 1], and let g be defined by $g(x) = f(x), x \notin \left\{0, \frac{1}{2}, 1\right\}$. $g(0) = g\left(\frac{1}{2}\right) = g(1) = 5$. Is g measurable ?
- (vi) Let f, g be functions defined on [0, 2] as follows :

$$f(x) = x, g(x) = x^2.$$

Draw the graph of the function max (f, g).

DB-147

7

4

- 3.
- (A) (i) Show that if f is a bounded measureable function on [a, b], then f is Lebesgue integrable.7
 - (ii) Let E_1 and E_2 be measurable subsets of [0, 1]. Suppose $E_1 \cup E_2 = [0, 1]$, show that at least one of the sets E_1 , E_2 has measure $\ge \frac{1}{2}$. 7

OR

- (i) Let f be defined on [0, 1] by f(x) = x. Let E_1 be the inverse image under f of $\left[0, \frac{1}{2}\right]$. Let E_2 be the inverse image under f of $\left[\frac{1}{2}, \frac{3}{4}\right]$. Let E_3 be the inverse image under f of $\left[\frac{3}{4}, 1\right]$. Show that $P = \{E_1, E_2, E_3\}$ is a measureable partition of [0, 1]. Calculate U [f; p] and L [f; p].
- (ii) Suppose E_1 and E_2 are measureable subsets of [a, b] and f is a bounded measurable (so Lebesgue integrable) function defined on [a, b]. Prove that $\int_{E_1} f + \int_{E_2} f = \int_{E_1 \cup E_2} f + \int_{E_1 \cap E_2} f \cdot E_1 = \int_{E_2} f + \int_{E_1} f \cdot E_2 = \int_{E_1} f$
- (B) Do any three :
 - (i) Suppose $E \subset [0, 1]$ is measurable and $mE = \frac{1}{2}$. Find $\int_{\Sigma} 1$. (Do not prove)

(ii) Suppose f is defined on [0, 1] by
$$f(x) = x$$
. Suppose $E = \left(\frac{1}{2}, \frac{3}{4}\right)$. Find $\int_{E} f$

(iii) Suppose E_1 and E_2 are disjoint measurable subsets of [a, b] and f is a bounded function in \mathfrak{L} [a, b]. Suppose $\int_{E_1} f = 2$ and $\int_{E_2} f = 3$. Find $\int_{E_1 \cup E_2} f$.

(Do not prove)

0

(iv) Let f(x) = 0 if x is rational, $x \in [0, 1]$ and f(x) = 1 if x is irrational, $x \in [0, 1]$.

Find
$$\int f$$
. (Do not prove).

(v) Evaluate
$$\int_{0}^{\pi} f$$
, where $f(x) = \sin x, x \in [0, \pi]$.

DB-147

3

4. (A) (i) Let
$$f(x) = \frac{1}{x^p}$$
, $(0 \le x \le 1)$
Prove that $f \in \mathfrak{L}[0, 1]$, if $p \le 1$.
Find the value of $\int_0^1 f$, if $p \le 1$.
(ii) If $f \in \mathfrak{L}[a, b]$ and if $F(x) = \int_a^x f(t) dt$, $(a \le x \le b)$. Prove that F is continuous
on [a, b].
OR
(i) State Fatou's lemma. (Do not prove)

(ii) Let
$$f \in \mathfrak{L}[a, b]$$
. Let $\varepsilon > 0$ be given. Show that there exists a $\delta > 0$ such that $\left| \iint_{E} f \right| < \varepsilon$ whenever E is a measurable subset of [a, b] with mE < δ .

3

(B) Do any three :

(i) If
$$f(x) = \frac{1}{x}$$
 (0 < x ≤ 1), find ²f.

- (ii) If $f(x) = \sin x$ ($0 \le x \le 2\pi$), draw the graph of f^+ .
- (iii) True or False ? If f(x) = g(x) almost everywhere $(x \in E)$ then ${}^{5}f(x) = {}^{5}g(x)$ almost everywhere $(x \in E)$. (Do not prove)
- (iv) True or False ? If f and g are in $\mathfrak{L}[a, b]$, then fg $\in \mathfrak{L}[a, b]$. (Do not prove).
- (v) State (without proof) the Lebesgue Dominated Convergence Theorem.

