\qquad

DC-120

December-2018
M.Sc., Sem.-I

403 : Mathematics
(Complex Analysis - I)

Time : 2:30 Hours]
[Max. Marks : 70

1. (a) (i) For any two complex numbers z_{1} and z_{2}, prove the triangular inequality $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$. When does the equality hold?
(ii) Prove that the complex numbers $\mathrm{z}_{1}, \mathrm{z}_{2}$ and the origin form an equilateral triangle only if $z_{1}^{2}+z_{2}^{2}-z_{1} z_{2}=0$.

OR

(b) (i) If $\mathrm{f}(\mathrm{z})$ has a finite limit at z_{0}, then $\mathrm{f}(\mathrm{z})$ is a bounded function in some neighborhood of z_{0}. Also verify the inequality $\sqrt{2}|z| \geq|\operatorname{Re} z|+|\operatorname{Imz}|$.
(ii) If the function $g(z)$ is continuous at $z=z_{0}$ and the function $f(z)$ is continuous at $\mathrm{g}\left(\mathrm{z}_{0}\right)$, then the composite function $\mathrm{f}[\mathrm{g}(\mathrm{z})]$ is continuous at z_{0}.
(c) Attempt any four :
(i) Describe the region $\left\{\mathrm{z}: \operatorname{Im}(\mathrm{z})<|\mathrm{z}-1|^{2}\right\}$. State whether the region is a domain.
(ii) State the definition of connected set.
(iii) Compute the limit of function $\lim _{\mathrm{z} \rightarrow-\mathrm{i}} \frac{\left(\mathrm{iz}^{3}+1\right)}{\mathrm{z}^{2}+1}$ if it exists?
(iv) If $z_{1}=-5$ and $z_{2}=-1+i$, show that $\operatorname{Arg}\left(z_{1} / z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)-\operatorname{Arg}\left(z_{2}\right)$.
(v) Where the function $\operatorname{Ln}\left(1+z^{2}\right)$ is not continuous on the complex plane?
(vi) State the definition of Uniform continuity of a complex function. Is $\mathrm{f}(\mathrm{z})=3 \mathrm{z}-2$ is uniformly continuous in the region $|\mathrm{z}| \leq 1$?
2. (a) (i) State and prove the sufficient condition for a function to be analytic.
(ii) Show that the function $\operatorname{Ln} \mathrm{z}$ is analytic for all z except when $\operatorname{Re} \mathrm{z} \leq 0$.

OR

(b) (i) Let $f(z)$ be an analytic function on a connected open set D. If there are two constants c_{1} and $c_{2} \in C$, not all zero, such that $c_{1} f(z)+c_{2} \overline{f(z)}=0$ for all $z \in D$, then show that $f(z)$ is a constant on D.
(ii) If $\mathrm{f}(\mathrm{z})=\mathrm{u}+$ iv is an analytic function of $\mathrm{z}=x+$ iy and $\mathrm{u}+\mathrm{v}=(x+\mathrm{y})$ $\left(2-4 x y+x^{2}+y^{2}\right)$ then find u, v and the analytic function $f(z)$ in terms of z.
(c) Attempt any four :
(i) Are functions $\mathrm{f}(\mathrm{z})$ and $\mathrm{f}(\overline{\mathrm{z}})$ simultaneously analytic ? If yes, why?
(ii) Let $f(z)$ be an analytic function in a domain D. $f(z)$ is constant in D if $f^{\prime}(z)$ vanishes identically in D. Is this statement true ? If yes, why?
(iii) Is the function $w=|z|^{2}$ continuous everywhere but nowhere differentiable except at the origin? If yes, why?
(iv) State Cauchy-Riemann equations in polar form.
(v) The function $f(z)=z \sec z$ is not analytic at the points $z=$ \qquad
(vi) If $u=x^{2}-y^{2}$ is harmonic, then $\frac{\partial^{2} u}{\partial z \partial \bar{z}}=$ \qquad
3. (a) (i) State and prove the existence of the contour integral.
(ii) Evaluate the integral $\mathrm{I}=\int_{\mathrm{C}}\left(x+\mathrm{y}^{2}-\mathrm{i} x \mathrm{y}\right) \mathrm{dz}$, where
$\mathrm{C}: \mathrm{z}=\mathrm{z}(\mathrm{t})=\left\{\begin{array}{cc}\mathrm{t}-2 \mathrm{i}, & 1 \leq \mathrm{t}<2, \\ 2-\mathrm{i}(4-\mathrm{t}), & 2<\mathrm{t} \leq 3 .\end{array}\right.$

OR

(b) (i) Find a simple, piecewise smooth curve in t the form $\mathrm{z}=\mathrm{z}(\mathrm{t})$, whose trace and direction is given by the square with vertices at $z=3 \pm 3 i$ and $z=-3 \pm 3 i$ traversed counter clockwise. Also check whether the curve
$\mathrm{z}(\mathrm{t})=\left\{\begin{array}{cc}\mathrm{t}+\mathrm{i}\left(1+\mathrm{t}^{2}\right), & -2 \leq \mathrm{t} \leq 1 \\ 2-\mathrm{t}+\mathrm{i}\left[3-(\mathrm{t}-2)^{2}\right], & 1<\mathrm{t} \leq 4 .\end{array}\right.$
is closed, simple, smooth or piecewise smooth.
(ii) Find an upper bound for the absolute value of the integral $\mathrm{I}=\int_{\mathrm{C}}\left(\exp (2 \mathrm{z})-\mathrm{z}^{2}\right) \mathrm{d} \mathrm{z}$, where C is the contour given in the figure below

(c) Attempt any three :
(i) The primitive of a function is unique up to an additive constant, why?
(ii) A simple closed Jordan curve divides the Argand plane into \qquad open domains which have the curve as common boundary.
(iii) Compute the length of the curve $\mathrm{z}(\mathrm{t})=(1-\mathrm{i}) \exp (-\mathrm{it}), 0 \leq \mathrm{t} \leq \pi / 2$.
(iv) Find an upper bound for the absolute value of the integral $I=\int_{C} \exp \left((\bar{z})^{2}\right) d z$,
$\mathrm{C}:|\mathrm{z}|=2$ where C is traversed in the anticlockwise direction.
4. (a) (i) State and prove Cauchy integral theorem.
(ii) Evaluate the integral $\mathrm{I}=\oint_{\mathrm{C}} \frac{\exp (\mathrm{z})}{\mathrm{z}^{2}(\mathrm{z}+1)^{3}} \mathrm{dz}, \mathrm{C}:|\mathrm{z}|=2$.

OR

(b) (i) State and prove Liouville's theorem.
(ii) Verify that the maximum and minimum modulus theorems hold for the function $f(z)=z^{2}+1$, where C is the circle $|z|=1$ and D is the domain inside C.
(c) Attempt any three :
(i) State Cauchy inequality.
(ii) If $f(z)$ is an analytic function within and on a simple closed contour C and z_{0} is any point inside C, then show that $\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z=\oint_{C} \frac{f^{\prime}(z)}{\left(z-z_{0}\right)} d z$.
(iii) Evaluate the integral $\mathrm{I}=\oint_{\mathrm{C}} \frac{\exp (\mathrm{z})}{\mathrm{z}^{2}+9} \mathrm{dz}, \mathrm{C}:|\mathrm{z}|=2$.
(iv) Define Simply connected domain. Can we convert Multiply connected domain into Simply connected domain? If yes, how?

