Seat No.: _ 246

E-735

December-2010

Time: 3 Hours]

[Max. Marks: 70

Instructions:

(b)

- (1) All questions carry equal marks.
- (2) Necessary constants:

$$N = 6.022 \times 10^{23} \text{ mole}^{-1}$$

$$k = 1.38 \times 10^{-27} \text{ ergs.sec} = 1.38 \times 10^{-23} \text{ JK}^{-1}$$

$$h = 6.626 \times 10^{-27} \text{ ergs.sec} = 6.626 \times 10^{-34} \text{ J.sec}$$

$$C = 2.998 \times 10^{10} \text{ cm.sec}^{-1} = 2.998 \times 10^8 \text{ m.sec}^{-1}$$

$$F = 96500 C$$

$$R = 8.314 \times 10^7 \text{ ergs K}^{-1} \text{ M}^{-1}$$

$$= 8.314 \text{ JK}^{-1} \text{ M}^{-1}$$

- $= 1.987 \text{ cal.K}^{-1} \text{ M}^{-1}$
- (a) Derive an equation for the approximate calculation of the fugacity of a gas.

7

Discuss the Nernst heat theorem and derive the equation giving relation between

free energy, enthalpy and heat capacity.

7 7

3

7

7

(b) Derive Gibbs-Duham equation.

OR

- (i) The activity of 3.0 moles of substance changes from 0.05 to 0.35. What would be the change in it's free energy at 27 °C.
- (ii) Calculate change in entropy when two moles of ice are heated from -10 °C to 10 °C. C_{p(ice)} = 37.7 J mol⁻¹ K⁻¹, C_{p(water)} = 75.3 J mol⁻¹ K⁻¹, ΔH_f = 6.01

kJ mol

 (a) Explain the mechanism and kinetics of chain reaction between hydrogen and bromine.

OR

Derive the Michaelis Menten equation of enzyme catalyzed reaction. Give two examples of enzyme catalyzed reaction.

- (i) Write a note on explosion limits.
- (ii) Calculate the entropy of activation (ΔS^*) for a reaction. $H_2 + I_2 \Longrightarrow 2HI$ at 575 °K. The value of frequency factor (A) is $7.94 \times 10^{10} \, \mathrm{sec}^{-1}$.

OR

(i) Derive theory of absolute reaction rate.

(ii) Calculate the frequency factor (A) for the unimolecular decomposition of (CH₃CO)₂ at 285 °C. The value of entropy of activation (ΔS*) is 13.15 cal.mol⁻¹.deg⁻¹ (e.u.).

3

3.	(a)	What are different types of defects in solid? Derive equation to calculate number of Schottky defects in solids. OR	7
		Discuss super conductivity.	7
	(b)	Classify materials into conductors, semi conductors and insulators. Explain on what basis this classification is made.	7
		OR	
		Estimate the mole fractions of Schottky and Frenkel defects in a NaCl crystal at 1000 °K. The energies of formation of these defects are 2 eV and 3 eV,	
		respectively (1 eV = 1.602×10^{-19} J, k = 1.38×10^{-23} JK ⁻¹).	7
4.	(a)	Derive Gibbs adsorption isotherm equation and explain positive and negative surface activity from it.	7
		OR	
		Derive BET equation.	7
	(b)	(i) Write a note on detergents.	3
		(ii) For 2 × 10 ⁻⁴ M solution of organic acid dy/dc is -0.08 N m ² mol ⁻¹ at 25 °C. Calculate surface excess (Gibbs adsorption) of the acid.	4
		(i) Cive difference between abscisal describes and absorbed adaptation	3
201		 (i) Give difference between physical adsorption and chemical adsorption. (ii) According to BET isotherm, the value of Vm for adsorption of nitrogen gas 	- 52
		on silica gel at - 183 °C is 116.2 ml gm ⁻¹ . The surface area of the silica gel	
		is 506.3 metre ² gm 1. Calculate the area covered by one molecule of	
	4,	nitrogen.	4
5.	Ansı	wer in brief (one mark each):	14
•	(1)	State the third law of thermodynamic and its applications.	
	(2)	What is Fugacity?	
	(3)	Define Ideal solution.	
	(4)	Explain Unimolecular reaction.	
	(5)	Define Chain Length.	
	(6)	What is Chain reaction?	
-	(7)	What is Unit cell?	
	(8)	What is Enzyme?	
	(9)	Chemical Potential.	
10.0	(10)	Define Surface Tension.	
	(11)	Define Absorption.	
	(12)	What is adsorbate and adsorbant?	
ř	(13)	Define Insulators.	
*1	(14)	Define Semiconductors.	
-			

87.