Seat No.: 410

DC-121

December-2018

M.Sc., Sem.-I

403: Physical Chemistry

Time: 2:30 Hours

[Max. Marks: 70

Necessary constants:

$$N = 6.022 \times 10^{23} \text{ mole}^{-1}$$

$$k = 1.38 \times 10^{-16} \text{ ergs } \text{K}^{-1} = 1.38 \times 10^{-23} \text{ JK}^{-1}$$

$$h = 6.626 \times 10^{-27} \text{ erg.sec} = 6.626 \times 10^{-34} \text{ J. sec.}$$

$$C = 2.998 \times 10^{10} \text{ cm. sec}^{-1} = 2.998 \times 10^8 \text{ m. sec}^{-1}$$
.

$$F = 96500 C$$

$$R = 8.314 \times 10^7 \text{ ergs K}^{-1} \text{M}^{-1}$$

$$= 8.314 \, JK^{-1}M^{-1}$$

$$= 1.987 \text{ cal. } \text{K}^{-1}\text{M}^{-1}$$

 (A) State the third law of thermodynamics. Show how the absolute entropy of a substance can be determined with the help of this law and calculate given below example.

Calculate the entropy change accompanying the conversion of 1 mole of ice at 273 °K and 1 atmospheric pressure into steam at 373 °K and 1 atmospheric pressure, given that at 273 °K, the molar heat of fusion of ice, ΔH_f is 6.002 kJ mole⁻¹ and at 373 °K, the molar heat of vapourisation of water, ΔH_v is 40.602 kJ mole⁻¹. It is also assumed that the molar heat capacity in the temperature range 373-273 °K remains constant at 75.22 JK⁻¹ mol⁻¹.

OR

- (i) Derive Gibbs-Duham equation.
- (ii) For a reaction $N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$ $\Delta H = 43200$ cal., whereas the conventional chemical constants are $N_2 = 2.6$, $O_2 = 2.8$ and NO = 3.5. Calculate K_p at 2200 °K.

(B)	Answer in brief any four of the following:	
	(i)	Define : Chemical potential
W.	(ii)	Define : Raoult's law
	(iii)	Define : Activity co-efficient
	(iv)	Define : Fugacity
	(v)	Define : Non-ideal solution
	(vi)	Write only equation of density measurement method for determination of partial molar volume.
(A)		ine chain reaction. Discuss kinetics of chain reaction and calculate given below nple.
	7 -	Calculate the entropy of activation (ΔS^*) for a reaction $H_2 + I_2 \longrightarrow 2HI$ at
	473	°K. The value of frequency factor (A) is 8.0×10^{10} second ⁻¹ .
		OR
	(i)	Discuss Lindamana theory of unimplecular reactions

Discuss Lindemann theory of unimolecular reactions.

- 7
- (ii) Calculate frequency factor(A) for the unimolecular decomposition of (CH₃CO)₂ at 285 °C. The value of the entropy of activation (ΔS*) is 13.15 cal.mol⁻¹.deg⁻¹ (e.u.).
- B) Answer in brief any four of the followings:
 - (i) Define: Chain length
 - (ii) Define: Unimolecular reaction
 - (iii) Define: Order of reaction
 - (iv) Define: Energy of activation
 - (v) Define: Enzyme
 - (vi) What is molecularity of reaction?

 (A) Derive an equation to calculate number of Schottky defects in solid and calculate given below example.

The energy of formation of a Schottky defect in NaCl crystal is 2.4 eV and that for Frenkel defect is 3.6 eV. Estimate the mole fraction of these defects in a crystal of NaCl at 1300 °K. (1 eV = 1.602×10^{-19} J, k = 1.38×10^{-23} JK⁻¹)

OR

- (i) Discuss Perovskites.
- (ii) Classify materials into conductors, semi-conductors and insulators. Explain on what basis this classification is made.
- (B) Answer in brief any three of the following:
 - (i) What is unit cell?
 - (ii) Define: Schottky defects.
 - (iii) Define insulator and give one example.
 - (iv) Pure silicon is an insulator but becomes a semi-conductor on heating. Why?
 - (v) If the Miller indices are 100, then to which axis the given plane is parallel?
- 4. (A) Derive Gibbs adsorption isotherm equation and calculate given below example: 14

For a 1.01×10^{-4} M aqueous solution of n-butanoic acid at $27 \, {}^{\circ}\text{C} \frac{\text{d}\gamma}{\text{dc}} = -0.081 \, \text{Nm}^2 \, \text{mole}^{-1}$.

If we use the Gibbs adsorption equation, determine the surface excess of butanoic acid and also calculate the average surface area available to each molecule.

OR

- (i) What are miceller? Explain critical miceller concentration.
- (ii) In the study of adsorption of nitrogen gas on Fe-Al₂O₃ at 77 °K, the area occupied by a molecule of nitrogen is 16.2 ×10⁻²⁰ metre². If the specific area of Al₂O₃ is 12.46 metre⁻²gm⁻¹, calculate the value of V_m is BET isotherm.

14

7

- (B) Answer in brief any three of the following:
 - (i) What is adsorption isotherm?
 - (ii) What is sorption?
 - (iii) What is unit of surface tension (γ) in C.G.S. system ?

3

- (iv) What is adsorbate and adsorbant?
- (v) What is specific surface area?