Seat No. : **DD-128** December-2018 M.Sc., Sem.-I 404 : Mathematics (Ordinary Differential Equations) Time : 2:30 Hours] [Max. Marks: 70 (A) Answer the following questions : Find the general solution of the equation $(1 + x^2)y'' + 2xy' - 2y = 0$ near x = 0.Define the radius of convergence of the power series $\sum_{0}^{\infty} a_n x^n$. Give three power series whose radius of convergence are $\frac{1}{5}$, 0 and ∞ respectively. OR n. Is the converse true? Solve the equation $y'' + 4y = 3 \sin x$. If f and g are analytic at x_0 , prove that f + g is analytic at x_0 .

- (4) at (0, 0).
- Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ such that f' exist but f' is not (5) continuous.
- Define an ordinary point of the equation y'' + Py' + Qy = 0. (6)
- 2. (A) Answer the following questions :

(2)

(1)

Find two independent Frobenius solutions of the equation xy'' + 2y' + xy = 0. (1)

Show that
$$\tan^{-1} x = xF(\frac{1}{2}, 1, \frac{3}{2}, -x^2)$$

OR

) Solve the Euler equation
$$y'' + \frac{4}{x}y' + \frac{2}{x^2}y = 0$$
 near $x = \infty$.

(2) Solve the equation
$$(x^2 - x - 6)y'' + (5 + 3x)y' + y = 0$$
 near $x = 3$.

DD-128

1.

P.T.O.

14

4

14

(1) If f is analytic at
$$x_0$$
, prove that $f^{(n)}(x_0)$ exists for all n

(2) Find the general solution of the equation
$$4y'' + 4xy' + 4y = 0$$
 near $x = 0$

(1)

(2)

Find the general solution of y'' - 5y' + 6y = 0. (1)

- (2)
- (3)
- Find the differential equation satisfied by the family of circles with centres

Find the general solution of the equation
$$4y'' + 4xy' +$$

empt any **Four** :

2) Find the general solution of the equation
$$4y'' +$$

- (B) Attempt any **Four** :
 - (1) Define singular point and regular singular point by illustrations.
 - (2) Express the function $f(x) = \log(x + 1)$ in terms of the Legendre function F(a, b, c, x).
 - (3) When we say that three functions f, g and h are linearly independent ? Give three such functions on the closed interval [0, 1].
 - (4) When we say that $x = \infty$ is an ordinary point of the equation y'' + Py' + Qy = 0.2
 - (5) Give an equation which has a regular singular point at $x = \infty$.
 - (6) Give hypergeometric series. Why the series is called 'hyper'?
- 3. (A) Answer the following questions :
 - (1) State and prove the Rodrigues' formula.
 - (2) State and prove the Minimax property of Chebyshev polynomials.

OR

- (1) State and prove the Least squares approximation method.
- (2) State and prove the orthogonality of the Legendre polynomials $P_n(x)$.
- (B) Attempt any Three.
 - (1) Define Hermite polynomials.
 - (2) Find the first three terms of the Legendre series of the function $f(x) = e^x$.
 - (3) Show that $P_n(x)$ is an even function if n is even.
 - (4) Can we have a Legendre polynomial $P_n(x)$ such that $P_n(k) = 0$ for each $k \in N$? Justify.
 - (5) Prove that $P_n(-1) = (-1)^n$.
- 4. (A) Answer the following questions.
 - (1) Define the Bessel function $J_p(x)$. Show that for any integer m, $J_{m+\frac{1}{2}}(x)$ is

an elementary function.

(2) Explain in detail (with a simple illustration) the method of successive approximations.

OR

- (1) Show that the functions $J_p(\lambda_n x)$ are orthogonal with respect to the weight function x on the closed interval [0, 1].
- (2) State (without proof) Picard's theorem. Can we omit the continuity of $\frac{\partial f}{\partial y}$? Justify.
- (B) Attempt any **Three**.
 - (1) If $f: \mathbb{R} \to \mathbb{R}$ satisfies the inequality $| f(x) f(y) | \le M | x y |$ for all $x, y \in \mathbb{R}$, what can be said about the continuity and differentiability of f?
 - (2) Show that $|\sin x \sin y| < x y$ for all $x, y \in \mathbb{R}$.
 - (3) Show that between any two positive zeros of $J_0(x)$ there is a zero of $J_1(x)$.
 - (4) Find the value of $\left(\frac{7}{2}\right)$!
 - (5) Define elementary function and special function. Give two examples of each.

DD-128

14

3

3

14