Seat No. : _____

[Max. Marks : 70

7

7

DD-126

December-2018

M.Sc., Sem.-I

404 : Physics (Solid State Physics and Electronics-I)

Time : 2:30 Hours]

1. (A) (i) State the Bloch theorem and discuss it in detail.

(ii) Discuss behaviour of an electron in a periodic potential.

OR

- (i) Explain nearly free electron approximation in detail.
- (ii) Explain approximate solution of the wave equation near a zone boundary.
- (B) Answer in brief any four questions from the following : (Each questions is of one mark)
 - (i) Differentiate the metal and insulator in terms of energy gap.
 - (ii) Which information you will get from Kronig-Penny model?
 - (iii) State Bloch function,
 - (iv) Define energy gap.
 - (v) What do you mean by periodic potential?
 - (vi) What do you mean by crystal structure?

2.	(A)	(i) Using tight binding approximation, discuss energy bands in the simple	
		cubic crystal.	7
		(ii) Discuss construction of Fermi surfaces in crystals.	7
		OR	
		(i) Explain width of bands in case of tight binding approximation.	7
		(ii) Discuss de-Haas-Van Alphen effect in detail.	7
	(B)	Answer in brief any four questions from the following : (Each questions is of one	
		mark)	4
		(i) The de-Haas-Van-Alphen effect offers the most precise measurements of	
		in metals.	
		(ii) State the validation of tight binding approximation.	
		(iii) Which information you will get from the Wigner-Seitz model ?	
		(iv) What do you mean by cohesive energy ?	
		(v) Define Fermi energy.	
		(vi) Define effective mass in case of metal	

(vi) Define effective mass in case of metal.

DD-126

3.

- (A) (i) Draw circuit diagram of Class B push pull power amplifier and explain its working. Using graphical method of analysis show that its maximum theoretical conversion efficiency is 78.5 %.
 - (ii) Giving neat circuit diagram, explain working of a class A push-pull power amplifier. Show that the even harmonics are absent in the output.

7

7

3

OR

- (i) Draw circuit diagram of astable multivibrator using BJT. Giving voltage timing diagrams explain its working.
- (ii) What are multivibrators? What are its types? Explain clearly how they are different in their operation. An astable multivibrator is operated with supply voltage, $V_{CC} = 12$ V. Determine the value of capacitors to use to provide a symmetrical oscillation of 50 kHz if $R_1 = R_2 = 4.7$ k Ω
- (B) Answer in brief any three questions from the following : (Each questions is of one mark)
 - (i) List the main properties of Class C power amplifier,
 - (ii) Define harmonic distortion.
 - (iii) What is the function of input transformer in a push-pull amplifier?
 - (iv) What is class AB amplifier ?

4. (A) (i) Draw basic circuit of a phase shift oscillator using operational amplifier. Sketch the circuit waveforms, and briefly explain the circuit operation.
4 Write the oscillating frequency equation. Discuss the amplifier gain requirements.
3

- (ii) Explain application of Operational amplifier as Differential bridge amplifier. 7OR
- (i) (1) Draw the circuit diagram for an integrating circuit. Sketch the output waveform produced by a rectangular waveform input to the inverting circuit. Explain the output waveform.

(2) Explain the term: Slew rate.

- (ii) Write a short note on: Frequency compensation in operational amplifier. 7
- (B) Answer in brief any three questions from the following : (Each questions is of one mark)3
 - (i) What is the difference between actual ground and virtual ground?
 - (ii) What is voltage follower circuit?
 - (iii) Define term " dB / octave".
 - (iv) Explain the terms 'inverting terminal' and 'non-inverting terminal' as applied to an op-amp.

DD-126