Seat No. :	
7	
ology)	9
[Max. Marks :	70
	14
ent of solid waste.	
waste treatment.	
liquid waste".	
	14
arine oil contamination.	
ion of hazardous waste.	
applications.	
diation of dye-wastes.	
	14
on of coal.	
eral recovery.	

AE-129

April -2018

B.Sc., Sem.- VI

310: Biotechnology

(Environmental Biotechn

Time	e: 3	Hours]	[Max. Marks : 70
1.	Ansv	wer any two of the following :	14
	(A)	Explain the process of composting for the treatment of solid waste.	
	(B)	Define BOD and discuss its importance in liquid waste treatment.	
	(C)	Write a short note on "Safety in final disposal of liquid waste".	
	(D)	Discuss the anaerobic sludge digester.	
2.	Ansv	wer any two of the following :	14
	(A)	Discuss the methods for the bioremediation of marine oil contamin	ation.
	(B)	Explain the bioventing approach for bioremediation of hazardous w	aste.
	(C)	Discuss different parts of a bioreactor with their applications.	
	(D)	Describe the microbial approach for the bioremediation of dye-was	tes.
3.	Ansv	wer any two of the following:	14
	(A)	Describe the process and need for desulphurization of coal.	
	(B)	Write a short note on 'Heap Percolation' for mineral recovery.	
	(C)	Discuss the methods for the recovery of Copper.	
	(D)	Explain the production of Hydrogen as a fuel.	
4.	Ansv	wer any two of the following:	14
	(A)	Discuss different methods for the conservation of biodiversity.	
1	(B)	Elaborate the microbial risk assessments and control.	
	(C)	Describe the factors for global warming.	
	(D)	Write a short note on 'Integrated pest management'.	
AE-1	129	1	P.T.O

5. Answer in brief:

- (1) Define Biofilm.
- (2) Enlist the name of tests for drinking water.
- (3) Define Containment.
- (4) What is Bioslurping?
- (5) Define Bioavailability.
- (6) What is Biomagnification?
- (7) Define Biopilling.
- (8) Argue for hydrocarbons as fuel.
- (9) Define biometallurgy.
- (10) What is MEOR?
- (11) What are algal bloom?
- (12) What are the elements of risk assessment?
- (13) Enlist green house gases.
- (14) What are sea-weeds?

AE-129 2