Seat No.	:		

AB-110

April -2018

B.Sc., Sem.-VI

CC-307: Mathematics

(Abstract Algebra - II)

Time: 3 Hours] [Max. Marks: 70

Instructions: (1) All questions are compulsory and carry 14 marks.

- (2) Figures to the right indicate marks of the question/sub-question.
- (3) Notations are as usual.
- 1. (a) Define a ring. If R is a ring with unity and $a \in R$ then prove that
- 7

- (i) (-1) a = -a
- (ii) (-1)(-1) = 1

OR

Prove that a field is an integral domain. Is converse true? Justify your answer.

(b) Define characteristic of a ring.

7

Prove that the characteristic of an integral domain is either prime number or zero.

OR

Prove that the set $F = \{a + b\sqrt{2} / a, b \in \mathbb{Q}\}$ is a Field.

2. (a) State and prove the fundamental theorem of homomorphism on rings.

7

OR

Define 'Principal ideal'.

Prove that the ring $(\mathbb{Z}, +, \cdot)$ of all integers is the principal ideal ring.

(b) Check whether the set $A = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} / a, b \in \mathbb{Z} \right\}$ is a Subring of ring $R = (M_2(\mathbb{Z}); +; \cdot)$

or not ?

OR

Prove that a field has no proper ideal.

3.	(a)	Find the G.C.D. of polynomials.	7
		$f(x) = x^3 - 2x^2 + 3x - 7$ and $g(x) = x^2 + 2$ over the field R. Express the G.C.D. as a linear combination of two polynomials.	
		OR	
		State Eisenstein criterion for irreducibility of polynomials.	
		Discuss the irreducibility of the polynomial $8x^3 + 6x^2 - 9x + 24$ over Q.	
	(b)	Obtain all rational roots of the equation $2x^4 + x^3 - 10x^2 - 2x + 12 = 0$.	7
		OR	
		If $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n$ is polynomial with integer	
		co-efficient and $\frac{p}{q}$ is a rational number in lowest terms. If $\frac{p}{q}$ is a root of the	<
		equation $f(x) = 0$, then prove that $p \mid a_0$ and $q \mid a_n$.	
4.	(a)	An ideal I in a commutative ring R with unity is maximal ideal iff the quotient ring R/I is a field.	7
		OR	
		Give an example of a ring in which some prime ideal is not a maximal ideal.	
	(b)	Prove that the ideal $I = \langle x^3 - x - 1 \rangle$ is a maximal ideal in $Z_3[x]$.	7
		OR	
		Prove that a ring R can be embedded in a ring R' with unity.	
5.	Ansv	wer in short : (any seven)	14
	(i)	Define division ring.	
	(ii)	Is the ring $(\mathbb{Z}_7, +_7, \times_7)$ an integral domain ?	
	(iii)	List all unit elements in a ring $(\mathbb{Z}, +, \cdot)$.	
	(iv)	Is $(\mathbb{Z}, +, \cdot)$ an ideal of $(\mathbb{Q}, +, \cdot)$?	
	(v)	Define the kernel of homomorphism.	
	(vi)	Define associate polynomials.	
A	(vii)	Is the polynomial $f(x) = 9x^2 + 16$ reducible in $\mathbb{Q}(x)$? Also check its reducibility in $\mathbb{C}[x]$.	
	(viii	Is the ideal $\langle 6 \rangle$ prime ideal in the ring of integers ? Justify your answer,	

AB-110 2

(ix) List all zeroes of polynomial $f(x) = x^2 - 1$ in \mathbb{Z}_{15} .