Seat No.	:	
----------	---	--

AC2-04

April-2018

B.Sc., Sem.-VI

CC-309 : Mathematics (Analysis – III)

Time: 3 Hours] [Max. Marks: 70

Note: (1) All questions are compulsory.

- (2) Write the question number in your answer sheet as shown in the question paper.
- (3) Figures to the right indicate marks of the question.
- (a) Prove that every convergent sequence is a Cauchy sequence. Justify the converse of this theorem.

OR

Let X be a metric space. Then prove that

- any intersection of closed sets in X is closed.
- (2) any finite union of closed sets in X is closed.
- (b) If the mapping d: $R \times R \to R$ be defined by $d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$, then prove that d is a metric on R.

OR

If $\overline{A \cap B} = \overline{A} \cap \overline{B}$ is true then prove it and if not then give example violating this result.

2. (a) Prove that closed subsets of compact sets are compact.

OR

Let (X, d_x) , (Y, d_y) and (Z, d_z) be the metric spaces. If $f : E \subset X \to Y$ is continuous function at point $p \in E$ and function $g : Y \to Z$ is continuous function at point $p \in Y$, then prove that function $p \in E$.

(b) The function $f:(0, 1) \to R$ defined by $f(x) = \frac{1}{x}$ is not uniformly continuous.

OR

Let A and B be two disjoint closed subset of metric space X, then prove that A and B are separated sets.

AC2-04 P.T.O.

3.	(a)	Suppose that $\lim_{n \to \infty} f_n(x) = f(x)$ for $x \in E$ and let $M_n = \sup_{x \in E} f_n(x) - f(x) $. Then
		prove that $f_n \to f$ uniformly of E if and only if $\lim_{n \to \infty} M_n = 0$.

OR

Let (f_n) be sequence of real or complex valued functions with domain E. Then prove that the (f_n) is uniformly convergent if and only if (f_n) is a Cauchy sequence.

7

Give an example to show that a convergent series of continuous function have a discontinuous sum.

OR

Let $f_n(x) = \frac{x^2}{x^2 + (1 - nx)^2}$, $x \in [0, 1]$, then prove that the sequence $f_n(x)$ is uniformly bounded but not uniformly convergence on [0, 1].

State and prove Abel's limit theorem. 4. (a)

OR

If the power series $\sum_{n=0}^{\infty} a_n z^n$ has radius of convergence r, then prove that the power

series $\sum_{n=0}^{\infty} na_n z^{n-1}$ and $\sum_{n=0}^{\infty} \frac{a_n}{n+1} z^{n+1}$ has also radius of convergence r.

Show that for every $x \in \mathbb{R}$, (b)

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots$$

OR

Show that the function f(x)has derivatives of all orders at all $x \neq 0$

but does not have a Taylor's theorem.

Give the answer in brief: (any seven) 5.

- 14
- Define : Open Sphere in metric space. (1)
- Give an example of a set which is both open and closed. (2)
- Find the closure of the set of rational number Q and the set of real numbers R. (3)
- Show that (0, 1) is not compact. (4)
- Prove that $\sin^2 z + \cos^2 z = 1$, $z \in \mathbb{C}$. (5)
- State Bolzano Weierstrass Theorem for metric spaces. (6)
- State Binomial Series.
- Define: Uniformly continuous function. (8)
- Define: Complete metric space. (9)

AC2-04