Seat No.	:	
----------	---	--

MO-128

March-2019

B.Sc., Sem.-VI

CC-309: Mathematics

Time	: 2:3	[Max. Marks: 70		
Instructions:			(1) All questions are compulsory.	
			(2) Right hand side figure indicates marks of that question	
1.	(A)	(i)	Let X be a metric space. Prove that A subset G of X is open	if and only if it
			is a union of open spheres.	7
		(ii)	Prove that in any metric space X, each open sphere is an open	n set. 7
			OR	
		(i)	Define close set. Let X be a metric space. A subset F of X	is closed if and
			only if its complement F' is open.	
		(ii)	Let X be a complete metric space and let Y be a subspace of	of X. Prove that
			Y is complete if and only if it is closed.	
(B) Attempt any two short questions:				4
		(1)	Is the real function $ x $ defined on real line R is metric? Justit	fy.
		(2)	Define metric space.	
		(3)	Define interior of A. Give any two basic properties of Int(A)	•
2.	(A)	(i)	Prove that closed subset of a compact sets are compact.	7
		(ii)	Prove that a compact subset of a metric space are closed.	7
		A	OR	
		(i)	A subset E of a real line R1 is connected if and only if i	t has following
			property: "If $x \in E$, $y \in E$ and $x < z < y$ then $Z_0 \in E$ ".	
		(ii)	A mapping f of a metric space X into a metric space Y is cor	ntinuous on X if
			and only if $f^{-1}(V)$ is open in X for every open set V in Y.	
	(D)	A ttar		4
	(B)		npt any two short questions :	4
		(1)	Define complete metric space.	
		(2)	Define complete metric space. Define bounded mapping	
		(3)	Define bounded mapping.	
MO-1	128		1	P.T.O.

- 3. (A) (i) State and prove Weierstrass M-test. Show that $f_n(x) = n^2 x^n (1 x)$; $x \in [0, 1]$ does not converges uniformly to a function which is continuous on [0,1].
 - (ii) Let f_n satisfy
 - $(1) \quad \mathbf{f}_{\mathsf{n}} \in \mathbf{D} \left[\mathbf{a}, \mathbf{b} \right]$
 - (2) $(f_n(x_0))$ converges for $x_0 \in D[a, b]$
 - (3) f_n converges uniformly on [a, b] then prove that f_n converges uniformly on [a, b] to a function f.

OR

- (i) Let (f_n) be a sequence of continuous function on $E \subset C$ converges uniformly to f on E then prove that f is continuous on E.
- (ii) Prove that there exists a function $f: R \to R$ which is continuous everywhere but differentiable nowhere.
- (B) Attempt any two short questions:
 - (1) Is $f_n(x) = \frac{1}{1 + nx} (x \ge 0)$ point wise convergent? justify.
 - (2) If the series Σa_k converges absolutely then prove that the series $\Sigma a_k \cos(kx)$ is uniformly convergent on R.
 - (3) Define Uniform convergence.
- 4. (A) (i) Let $f(x) = \sum a_n x^n$ be a power series with radius of convergence 1. If the series converges at 1 then prove that $\lim_{x \to 1^-} f(x) = f(1)$
 - (ii) State and prove Weierstrass Approximation theorem.

OR

- (i) For every $x \in \mathbb{R}$, and n > 0, prove that $\sum_{k=0}^{n} (nx k)^2 \binom{n}{k} x^k (1 x)^{n-k} = nx(1 x) \le \frac{n}{4}$
- (ii) Show that for $\tan^{-1} x = x \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \dots$ for $-1 \le x \le 1$. Hence deduce that $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots$

3

- (B) Attempt any two short questions:
 - (1) Show that $\log 2 = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$
 - (2) State Binomial series for $\alpha \in R$ and |x| < 1.
 - (3) Define Taylor's series.

MO-128