|                                         | Seat No. : |                                                                                                                     |    |
|-----------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------|----|
|                                         |            | SI-132                                                                                                              |    |
|                                         |            | September-2020                                                                                                      |    |
|                                         |            | B.Sc., SemVI                                                                                                        |    |
|                                         |            | CC-307 : Mathematics (Abstract Algebra-II)                                                                          |    |
| lour:                                   | s]         | [Max. Marks:                                                                                                        | 50 |
| ns:                                     | (i)        | Attempt any three questions in Section-I.                                                                           |    |
|                                         | (ii)       | Section-II is a compulsory section of short questions.                                                              |    |
|                                         | (iii)      | Notations are usual everywhere.                                                                                     |    |
|                                         | (iv)       | The right hand side figures indicate marks of the sub-question.                                                     |    |
|                                         |            | SECTION – I                                                                                                         |    |
| ny TI                                   | HREE       | of the following questions:                                                                                         |    |
| Def                                     | ine a r    | ring. Also prove the following properties in a ring R:                                                              |    |
| (1)                                     | a•0        | = $0 \cdot a = 0$ , $\forall a \in R$ , where 0 is the zero element of R.                                           |    |
| (2)                                     | a•(-       | $b) = (-a) \cdot b = -(a \cdot b),  \forall a, b \in R.$                                                            | 7  |
|                                         |            | the set $Z(\sqrt{2}) = \{a + b\sqrt{2} / a, b \in Z\}$ forms a ring under usual addition plication of real numbers. | 7  |
| Prov                                    | e that     | every field is an integral domain.                                                                                  |    |
| Also                                    | give       | an example of an integral domain which is not a field.                                                              | 7  |
| Defi                                    | ne a B     | soolean ring and prove that a Boolean ring is a commutative ring.                                                   |    |
| Also give an example of a Boolean ring. |            |                                                                                                                     | 7  |

SI-132

2.

1.

(a)

(b)

(a)

(b)

Time: 2 Hours]

**Instructions:** 

Attempt any THREE of the following questions:

and.

P.T.O.

- (a) Define an ideal of a ring R. Also prove that a nonempty subset I of a ring R is an ideal of R if and only if (i) a b ∈ I, for all a, b ∈ I and (ii) a r and r a ∈ I, for all a ∈ I and for all r ∈ R.
  - (b) Show that (Z, +, •), the ring of integers is a principal ideal ring.

7

7

- 4. (a) Prove that a field has no proper ideal.
  - (b) Define a ring Homomorphism. If  $\Phi: (R, +, \bullet) \to (R', \oplus, \odot)$  is a ring homomorphism and I is an ideal of R then prove that  $\Phi(I)$  is an ideal of  $\Phi(R')$ .
- 5. (a) For nonzero polynomials  $f, g \in D[x]$  prove that [fg] = [f] + [g].
  - (b) Using Division algorithm for f(x) and  $g(x) \in Z_5[x]$  express f(x) into the form  $q(x) g(x) + r(x) \text{ for } f(x) = x^4 + 3x^2 + 2x + 4 \text{ and } g(x) = x + 1 \in Z_5[x].$
- 6. (a) Suppose  $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n \in Z[x]$  and suppose  $\frac{p}{q}$  in the simplest form (i. e. (p, q) = 1) is a solution of the equation f(x) = 0. Then prove that  $p|a_0$  and  $q|a_n$ .
  - (b) Show that the polynomial  $x^3 + 3x^2 8$  is irreducible over Q.
- 7. (a) If  $\oplus$  and  $\odot$  are binary operations defined on the set R of all real numbers as  $a \oplus b = a + b 1$ ;  $a \odot b = a + b ab$ , then show that  $(R, \oplus, \odot)$  is a field.
  - (b) If  $F_1$  and  $F_2$  are subfields of a field F, then prove that  $F_1 \cap F_2$  also is a subfield of F.

SI-132

- g. (a) If M is a maximal ideal of a commutative ring R with unity then prove that the quotient ring R/M is a field.
  - 7

7

(b) If I = < 4 > then show that I is a maximal but not a prime ideal of the ring 2Z of all even integers.

## SECTION - II

9. Attempt any FOUR of the following in short:

8

- (i) Give an example of a division ring which is not a field.
- (ii) Give an example of a subring which is not an ideal.
- (iii) Give an example of a subring of a ring which is not an ideal of the ring.
- (iv) Give an example of a division ring which is not a field.
- (v) State the remainder theorem and the factor theorem for polynomials.
- (vi) Define a prime ideal and give an example of a prime ideal.

SI-132