		Seat No. :	
		SJ-128	
		September-2020	
		B.Sc., SemVI	
		CC-308 : Mathematics (Analysis-II)	
Hour	s]	[Max. Marks: 50	
ons :	(1) (2) (3)	All Questions in Section I carry equal marks. Attempt any THREE questions in Section I. Question IX in Section II is COMPULSORY.	
		Section – I	
empt a	ny T h	ree questions :	
Let	f be ir	Integrable on [a, b] and $a < c < b$, then prove that f is integrable on [a, c]	
and	[c, b]	and $\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$	7
		$2x^2/3$ on $[0, 1]$ for $n \in NP_n = \left\{0, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \frac{4}{n}, \dots \frac{n-1}{n}, 1\right\}$, then find	_
$\lim_{n\to\infty}$	U[f]	P_n and $\lim_{n\to\infty} L[f; P_n]$.	7
Stat	e and	prove Second Mean Value Theorem of Integral Calculus.	7
Prov	e that	$\frac{1}{3\sqrt{2}} \le \int_{0}^{1} \frac{x^2}{\sqrt{1+x}} dx \le \frac{1}{3}$	7
Prov	e that	the series $\sum \frac{1}{n!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + + \frac{1}{n!} +$ converges to the value e,	
whic	h is a	n irrational number ?	7
Prov	e that	if p > 1, the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ converges and if p \le 1, the series	
dive			7
	-	prove Cauchy's condemsation test.	7
(1)	$\sum_{i=1}^{\infty}$	$\frac{n^{5/2}}{n^2+3n+5} $ (2) $\sum_{n=1}^{\infty} \left(1+\frac{3}{n}\right)^{-n^2}$	7

Time: 2 Hours]

Instructions:

1.

3.

4.

(A)

(B)

Attempt any Three questions:

(1) $\sum_{n=1}^{\infty} \frac{n^{5/2}}{n^2 + 3n + 5}$

(B) Let $f(x)=2x^2/3$ on [0, 1] for $n \in NP_n = 1$

Find the set of convergence (interval of convergence) and radius of convergence (B) for the power series $\sum_{n=1}^{\infty} \frac{n(x-1)^n}{(n+1)5^n}.$

7

(A) If $\sum a_n$ is absolutely convergent, then prove that any rearrangement of $\sum a_n$ has 6. the same sum.

7

- For the following, determine whether the series converges absolutely, converges (B) conditionally, or diverges:
 - (1) $\sum \frac{(-1)^n n}{(n^2+1)}$

(2) $\sum_{n=1}^{\infty} (-1)^n \frac{\sin n}{n^{3/2}}$

(A) Obtain Maclaurin series expansion of $\sin x$ for $-\infty < x < \infty$. 7.

- Write Taylor's formula with Cauchy form of remainder for f(x)a = 0 and -1 < x < 1.
- Let f be a real valued function on [a, a + h] and $f^{n+1}(x)$ is continuous on [a, a + h]. 8. Then Prove that,

 $\frac{f(a)}{2!}(x-a)^2 + ... + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_{n+1}(x)$ for

 $x \in [a, a+h]$ Where $R_{n+1}(x) = \frac{1}{n!} \int_{-\infty}^{x} (x-t)^n f^{(n+1)}(t) dt$. 7

Let (1-x)y' + 1 = 0 with initial conditions y(0)=1. Find a power series solution for this equation in power of x.

Section - II

9. Attempt any **Four** short questions:

8

7

- Give an example of a sequence which is bounded and divergent series. (1)
- If $f(x) = 3\cos x 2e^x$, find the primitive F of f. (2)
- Find limit superior and limit inferior of the sequence $S_n = \{1, 1/2, 1/3, 1/4, ...\}$. (3)
- Write Maclaurin series expansion of log(1+x) for -1 < x < 1. (4)
- Test for convergence : $\int \frac{dx}{1+x^2} dx$. (5)
- (6)Find the radius of convergence for the series $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$.