		Seat No.:	
		SK-127 September-2020	
		B.Sc., SemVI	
		CC-309 : Mathematics (Analysis-III)	
Hours]	[Max. Marks: 50	
ons:	(i)	Attempt any THREE questions in Section-I.	
)IIS •	(ii)	Section-II is a compulsory section of short questions.	
	(iii)	Notations are usual everywhere.	
	(iv)	The right hand side figures indicate marks of the sub question.	
		SECTION -I	
_		REE of the following questions:	7
		metric space. Prove that an open sphere is an open set. metric space with metric d. Show that d ₁ defined by	
d ₁ (x		$\frac{d(x,y)}{1+d(x,y)}$ is also a metric on X.	7,
Let 2	X be a	metric space. A subset F of X is closed if and only if its complement F'	
is op			7
		non-empty set, and let d be a real function of ordered pairs of elements h satisfies the following two conditions.	7
d(x,	y) = 0	$\Leftrightarrow x = y$, and $d(x, y) \le d(x, z) + d(y, z)$. Show that d is a metric on X.	
Prov	e that	Compact subsets of metric spaces are closed.	7
		E of the real line R ¹ is connected if and only if it has the following	
		If $x \in E$, $y \in E$ and $x < z < y$, then $z \in E$.	7

3.

Time: 2 Hours

Instructions:

1.

(B)

(A)

(B)

(A)

(B)

Attempt any THREE of the following questions:

- A mapping f of a metric space X into a metric space Y is continuous on X if and (A) (B) only if f-1 (V) is open in X for every open set V in Y.
 - 7

7

7

7

7

7

7

- State and prove Weierstrass M-test. Show that $f_n(x) = n^2 x^n (i x)$; 5.
 - $x \in [0, 1]$ converges pointwise to a function which is continuous on [0, 1].
 - Let (f_n) be a sequence of functions in R [a, b] converging uniformly to f.

Then
$$f \in R[a, b]$$
 and $\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} f(x) dx$.

- (A) Let (f_n) be a sequence of continuous function on $E \subset C$ converges uniformly to f_n 6. on E, then prove that f is continuous on E.
 - (B) Let f_n satisfy

 - (1) f_n ∈ D[a, b].
 (2) (f_n (x₀)) converges for x₀ ∈ D[a, b].
 - for converges uniformly on [a, b], then prove that for converges uniformly on [a, b] to a function f.
- State and prove Abel's limit theorem. 7. (A)
 - Show that for $-1 \le x \le 1$, $\log(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \dots + (-1)^{n-1} \cdot \frac{x^n}{n} + \dots$ Hence evaluate log2.
- 8. For every $x \in R$ and n > 0, prove that
 - $\sum_{k=0}^{n} (nx-k)^{2} {n \choose k} x^{k} (1-x)^{n-k} = nx (1-x) \le n/4$
 - State and prove Weierstrass Approximation theorem.

- 9. Attempt any FOUR of the followings in short:
 - (1) Prove that X and φ are an open set.
 - (2) Define: Metric Space.
 - (3) If F is closed and K is compact, then prove that $F \cap K$ is compact.
 - (4) Define: Connected set.
 - (5) Define Uniform convergence.

3611

(6) Prove by Taylor's series $\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$