Paper Solution Nov 2022

Example - 1:

SQ	SP	AQ	AP	RSP	Substitute
30,000	30	33,000	45.3	45	39

 $(2,000 \times 15)$

- (i) Traditional/Conventional Approach:
 - (a) Material Cost Variance = $(SQ \times SP) (AQ \times AP)$ = $(30,000 \times 30) - (33,000 \times 45.30)$

= 9,00,000 - 14,94,900

= -5,94,900 (U)

(b) Material Price Variance = AQ (SP - AP)

= 33,000 (30 - 45.30)

= -5,04,900 (U)

(c) Material Usage Variance = SP (SQ - AQ)

= 30 (30,000 - 33,000)

= -90,000 (U)

- (ii) Opportunity Cost Approach:
 - (a) Planning Variance:

	-4 50 000 (U)
Less: Revised Standard Cost (30,000 × 45)	13,50,000
Original Standard Cost (30,000 × 30)	9,00,000

→ Unavoidable Planning Variance:

	-2.70.000 (U)
Less: Cost of Alternate Material (30,000 × 39)	11,70,000
Original Standard Cost (30,000 × 30)	9,00,000

→ Possibly Avoidable Planning Variance::

	-1.80.000 (U)
Less: Revised Standard Cost (30,000 × 45)	13,50,000
Cost of Alternate Material (30,000 × 39)	11,70,000

(b) Operating Variance:

(2) Material Price Variance = AQ (RSP - AP)

= 33,000 (45 - 45.30)

= -9,900 (U)

(3) Material Usage Variance = RSP (RSQ - AQ)

= 45 (30,000 - 33,000)

= -1,35,000 (U)

Example - 2:

(1) Production Budget:

Dorticulors	Products				
Particulars	Α	В	С		
Budgeted Sales	18,000	30,000	24,000		
Add: Closing Stock	2,000		4,000		
	20,000	30,000	28,000		
Less: Opening Stock		10,000	8,000		
Production	20,000	20,000	20,000		

(2) Budgeted Direct Labour Hours:

Particulars	Budgeted Production (1)	Direct Labour Hours per unit (in minutes) (2)	Direct Labour Hours (3) = (1) × (2) / 60	
Operation I				
Product A	20,000	36	12,000	
Product B	20,000	84	28,000	
Product C	20,000	60	20,000	
			60,000	
Operation II				
Product A	20,000			
Product B	20,000	24	8,000	
Product C	20,000	48	16,000	
			24,000	
Operation III				
Product A	20,000	18	6,000	
Product B	20,000	12	4,000	
Product C	20,000			
			10,000	

(3) Budget Labour Cost:

Operation	Direct Labour Hours (1)	Rate Per Hour (2)	Direct Labour Cost (3) = (1) × (2)
1	60,000	32	19,20,000
II	24,000	40	9,60,000
III	10,000	48	4,80,000

(4) Net Direct Labour Hours:

Total Labour Hours (13 Weeks × 6 Days × 8 Hours)

624 124

Less: Lost Hours

500

(5) No. of Workers: (Direct Labour Hours of Operations / Net Hours)

 Operation I
 60,000 / 500
 120

 Operation II
 24,000 / 500
 48

 Operation III
 10,000 / 500
 20

(6) Man Power Budget:

Particulars	Operation I	Operation II	Operation III	Total
1. Direct Labour Hours	60,000	24,000	10,000	94,000
2. Direct Labour Cost	19,20,000	9,60,000	4,80,000	33,60,000
3. Number of Workers	120	48	20	188

Example - 3:

Working notes:

(1) Budgeted Sales Price:

Sales Price Variance = AQ (BSP - ASP)

20,000 = 36,000 (BSP) - 18,20,000

20,000 + 18,20,000 = 36,000 (BSP)

18,40,000 / 36,000 = BSP

BSP = 50

(2) Budgeted Profit:

Budgeted Selling Price 50

Less: Direct Material 10

Direct Wages 12

Variable Overheads 15

Fixed Overheads 8 45

Budgeted Profit per unit 5

Total Budgeted Profit = 40,000 units × ₹ 5 per unit

(3) Actual Profit:

Actual Sales 18,20,000

Less: Direct Material 3,70,000

Direct Wages 4,36,000

Variable Overheads 5,42,000

Fixed Overheads 3,26,000 16,74,000

Budgeted Profit per unit 1,46,000

Calculation of Variances:

Here, Material Rate Variance and Material Usage Variances are unfavourable.

Ratio is 2:3.

Material Rate Variance = $10,000 \times 2/5$ = -4,000 (U)

Material Usage Variance = $10,000 \times 3/5$ = -6,000 (U)

Here, Labour rate variance is favourable but efficiency variance is unfavourable.

Ratio is 1:2.

Labour Rate Variance

1 4,000 = **4,000 (F)** 1 (?)

Labour Efficiency Variance

1 4,000 = -8,000 (U) 2 (?)

Here, Variable O/hs rate variance is favourable but efficiency variance is unfavourable.

Ratio is 5:6.

Variable O/hs Rate Variance

(?)

(?)

Variable O/hs Efficiency Variance

$$= (36,000 \times 8) - 3,26,000$$

6

Here, Fixed O/hs Exp. Variance and Volume Variances are unfavourable.

Ratio is 1.5:8.

Fixed O/hs Exp. Variance =
$$38,000 \times 1.5/9.5 = -6,000 (U)$$

Fixed O/hs Volume Variance =
$$38,000 \times 8/9.5$$
 = -32,000 (U)

$$= 5 \times (36,000 - 40,000)$$

$$= 5 \times -4,000$$

Reconciliation Statement of Profit

Particulars		Amount
Budgeted Profit		2,00,000
Sales Price Variance	20,000	
Sales Margin Volume Variance	-20,000	0
Standard Profit		2,00,000
(1) Material Price Variance	-4,000	
Material Usage Variance	-6,000	-10,000
(2) Labour Rate Variance	4,000	
Labour Efficiency Variance	-8,000	-4,000
(3) Variable O/hs Rate Variance	10,000	
Variable O/hs Effi. Variance	-12,000	-2,000
(4) Fixed O/hs Exp. Variance	-6,000	
Fixed O/hs Volume Variance	-32,000	-38,000
Actual Prof	1,46,000	

Example - 4:

Cost of Investigation = C = ₹ 1,000

Probability for finding cause = (1 - p) = 0.4

Benefit = 2 months variance = ₹ 12,000

Cost of Corrective action = ₹ 2,000

So, L = Benefit - Cost of corrective action = ₹ 12,000 - ₹ 2,000 = ₹ 10,000

Expected value of benefit = (1 - p) L

$$= 0.4 (10,000)$$

Yes, The variance must be investigated, because the cost of investigation is ₹ 1,000, while the expected value of benefit is ₹ 4,000.

Thus, the inequality of C < (1 - p) L is satisfied.

- → Here, the probability of finding a corrective cause has been asked, that is, the probability of variance being controllable, so we have to find out the value of (1 - p).
- → To find out the Minimum probability (1 p), we make use of the formula

$$C = (1 - p) L$$

$$1,000 = (1 - p) 10,000$$

$$(1 - p) = 1,000 / 10,000$$

$$(1 - p) = 0.10$$

- → Difficulties in analysis of variances: (Part of answer) (Theory 4 marks)
 - (1) Difficulties in measuring results.
 - (2) The Interdependence between variances.
 - (3) The type of Efficiency Standard in operation.
 - (4) Inflation.
 - (5) The Controllability of Variances.
 - (6) Determining control limits.

Explain these points in detail.