
504 - Management A/c - Paper Solution November 2023

Example - 1:

SQ	SP	AQ	AP	RSP	Substitute
175,000	70	176,750	105.7	105	91
$(5,000 \times 35)$					

(i) Traditional/Conventional Approach:

(a) Material Cost Variance =
$$(SQ \times SP) - (AQ \times AP)$$

= $(175,000 \times 70) - (176,750 \times 105.70)$
= $1,22,50,000 - 1,86,82,475$
= $-6,432,475$ (U)

(ii) Opportunity Cost Approach:

(a) Planning Variance:

Original Standard Cost (175,000 × 70)	12,250,000
Less: Revised Standard Cost (175,000 × 105)	18,375,000
	-6,125,000 (U)
Unavoidable Planning Variance:	
Original Standard Cost (175,000 × 70)	12,250,000
Less: Cost of Alternate Material (175,000 × 91)	15,925,000
	-3,675,000 (U)
→ Possibly Avoidable Planning Variance::	
Cost of Alternate Material (175,000 × 91)	15,925,000
Less: Revised Standard Cost (175,000 × 105)	18,375,000

-2,450,000 (U)

(b) Operating Variance:

Example - 2:

(1) Production Budget for Quarter One:

Particulars	Months			W.N.
Particulars	January	February	March	April
Budgeted Sales	10,000	12,000	14,000	15,000
Add: Closing Stock	2,400	2,800	3,000	3,000
	12,400	14,800	17,000	18,000
Less: Opening Stock	2,700	2,400	2,800	3,000
Production	9,700	12,400	14,200	15,000

(2) Raw Material Consumption Quantity Budget for Quarter One:

Particulars				
Particulars	January	February	March	Total
	(9,700 Units)	(12,400 Units)	(14,200 Units)	
Material X (4 Kgs.)	38,800	49,600	56,800	145,200
Material Y (6 Kgs.)	58,200	74,400	85,200	217,800
Material Consumption	97,000	124,000	142,000	

W.N.: April (15,000 Units)

Material X 60,000

Material Y 90,000

Total **150,000**

(3) Raw Material Purchase Budget for Quarter One:

For Material X:

Particulars	Months			
Particulars	January	February	March	
Material Consumption	38,800	49,600	56,800	
Add: Closing Stock	24,800	28,400	30,000	
	63,600	78,000	86,800	
Less: Opening Stock	19,000	24,800	28,400	
Material Quantity	44,600	53,200	58,400	
× Cost per kg.	10	10	10	
Material Cost	446,000	532,000	584,000	

For Material Y:

	Months			
Particulars	January	February	March	
Material Consumption	58,200	74,400	85,200	
Add: Closing Stock	37,200	42,600	45,000	
	95,400	117,000	130,200	
Less: Opening Stock	29,000	37,200	42,600	
Material Quantity	66,400	79,800	87,600	
× Cost per kg.	15	15	15	
Material Cost	996,000	1,197,000	1,314,000	

April 90,000

April

60,000

Example - 3:

Working notes:

(1) Budgeted Sales Price:

Sales Price Variance = AQ (ASP - BSP) 10,000 = 9,10,000 - 9,000 (BSP) 10,000 - 9,10,000 = - 9,000 (BSP) 9,00,000 / 9,000 = BSP

BSP = 100

(2) Budgeted Profit:

Total Budgeted Profit = 10,000 units × ₹ 10 per unit = ₹ 1,00,000

(3) Actual Profit:

Total Actual F	Profit	73,000
Fixed Overheads	163,000	837,000
Variable Overheads	271,000	
Direct Wages	218,000	
Less: Direct Material	185,000	
Actual Sales		910,000

Calculation of Variances:

Here, Material Rate Variance and Material Usage Variances are unfavourable.

Ratio is 2:3.

Material Rate Variance =
$$5,000 \times 2/5$$
 = $-2,000$ (U)
Material Usage Variance = $5,000 \times 3/5$ = $-3,000$ (U)

Here, Labour rate variance is favourable but efficiency variance is unfavourable.

Ratio is 1:2.

Labour Rate Variance

Here, Variable O/hs rate variance is favourable but efficiency variance is unfavourable.

Ratio is 5:6.

Variable O/hs Rate Variance

Variable O/hs Efficiency Variance

Here, Fixed O/hs Exp. Variance and Volume Variances are unfavourable.

Ratio is 1.5:8.

Fixed O/hs Exp. Variance = $19,000 \times 1.5/9.5 = -3,000 (U)$

Fixed O/hs Volume Variance = $19,000 \times 8/9.5 = -16,000$ (U)

Reconciliation Statement of Profit

Reconcination Statement of Profit			
Particulars		Amount	
Budgeted Profit		100,000	
Sales Price Variance	10,000		
Sales Margin Volume Variance	-10,000	0	
Standard Profit		100,000	
(1) Material Price Variance	-2,000		
Material Usage Variance	-3,000	-5,000	
(2) Labour Rate Variance	2,000		
Labour Efficiency Variance	-4,000	-2,000	
(3) Variable O/hs Rate Variance	5,000		
Variable O/hs Effi. Variance	-6,000	-1,000	
(4) Fixed O/hs Exp. Variance	-3,000		
Fixed O/hs Volume Variance	-16,000	-19,000	
Actual Profi	73,000		

Example - 4:

Cost of Investigation = C = ₹ 4,000

Probability for finding cause = (1 - p) = 0.4

Benefit = 1 month variance = ₹ 24,000

Cost of Corrective action = ₹8,000

So, L = Benefit - Cost of corrective action = ₹ 24,000 - ₹ 8,000 = ₹ 16,000

Expected value of benefit = (1 - p) L

Yes, The variance must be investigated, because the cost of investigation is ₹ 4,000, while the expected value of benefit is ₹ 6,400.

Thus, the inequality of C < (1 - p) L is satisfied.

- → Here, the probability of finding a corrective cause has been asked, that is, the probability of variance being controllable, so we have to find out the value of (1 - p).
- → To find out the Minimum probability (1 p), we make use of the formula

$$C = (1 - p) L$$

$$4,000 = (1 - p) 16,000$$

$$(1 - p) = 4,000 / 16,000$$

$$(1 - p) = 0.25$$